parent
89dffeb46c
commit
80467525e2
@ -1,3 +1,160 @@
|
||||
import asyncio
|
||||
import os
|
||||
import time
|
||||
from functools import wraps
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
from termcolor import colored
|
||||
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
||||
|
||||
|
||||
def async_retry(max_retries=3, exceptions=(Exception,), delay=1):
|
||||
"""
|
||||
A decorator for adding retry logic to async functions.
|
||||
:param max_retries: Maximum number of retries before giving up.
|
||||
:param exceptions: A tuple of exceptions to catch and retry on.
|
||||
:param delay: Delay between retries.
|
||||
"""
|
||||
|
||||
def decorator(func):
|
||||
@wraps(func)
|
||||
async def wrapper(*args, **kwargs):
|
||||
retries = max_retries
|
||||
while retries:
|
||||
try:
|
||||
return await func(*args, **kwargs)
|
||||
except exceptions as e:
|
||||
retries -= 1
|
||||
if retries <= 0:
|
||||
raise
|
||||
print(f"Retry after exception: {e}, Attempts remaining: {retries}")
|
||||
await asyncio.sleep(delay)
|
||||
|
||||
return wrapper
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
class DistilWhisperModel:
|
||||
"""
|
||||
This class encapsulates the Distil-Whisper model for English speech recognition.
|
||||
It allows for both synchronous and asynchronous transcription of short and long-form audio.
|
||||
|
||||
Args:
|
||||
model_id: The model ID to use. Defaults to "distil-whisper/distil-large-v2".
|
||||
|
||||
|
||||
Attributes:
|
||||
device: The device to use for inference.
|
||||
torch_dtype: The torch data type to use for inference.
|
||||
model_id: The model ID to use.
|
||||
model: The model instance.
|
||||
processor: The processor instance.
|
||||
|
||||
Usage:
|
||||
model_wrapper = DistilWhisperModel()
|
||||
transcription = model_wrapper('path/to/audio.mp3')
|
||||
|
||||
# For async usage
|
||||
transcription = asyncio.run(model_wrapper.async_transcribe('path/to/audio.mp3'))
|
||||
"""
|
||||
|
||||
def __init__(self, model_id="distil-whisper/distil-large-v2"):
|
||||
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
self.torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
||||
self.model_id = model_id
|
||||
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
||||
model_id,
|
||||
torch_dtype=self.torch_dtype,
|
||||
low_cpu_mem_usage=True,
|
||||
use_safetensors=True,
|
||||
).to(self.device)
|
||||
self.processor = AutoProcessor.from_pretrained(model_id)
|
||||
|
||||
def __call__(self, inputs: Union[str, dict]):
|
||||
return self.transcribe(inputs)
|
||||
|
||||
def transcribe(self, inputs: Union[str, dict]):
|
||||
"""
|
||||
Synchronously transcribe the given audio input using the Distil-Whisper model.
|
||||
:param inputs: A string representing the file path or a dict with audio data.
|
||||
:return: The transcribed text.
|
||||
"""
|
||||
pipe = pipeline(
|
||||
"automatic-speech-recognition",
|
||||
model=self.model,
|
||||
tokenizer=self.processor.tokenizer,
|
||||
feature_extractor=self.processor.feature_extractor,
|
||||
max_new_tokens=128,
|
||||
torch_dtype=self.torch_dtype,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
return pipe(inputs)["text"]
|
||||
|
||||
@async_retry()
|
||||
async def async_transcribe(self, inputs: Union[str, dict]):
|
||||
"""
|
||||
Asynchronously transcribe the given audio input using the Distil-Whisper model.
|
||||
:param inputs: A string representing the file path or a dict with audio data.
|
||||
:return: The transcribed text.
|
||||
"""
|
||||
loop = asyncio.get_event_loop()
|
||||
return await loop.run_in_executor(None, self.transcribe, inputs)
|
||||
|
||||
def real_time_transcribe(self, audio_file_path, chunk_duration=5):
|
||||
"""
|
||||
Simulates real-time transcription of an audio file, processing and printing results
|
||||
in chunks with colored output for readability.
|
||||
|
||||
:param audio_file_path: Path to the audio file to be transcribed.
|
||||
:param chunk_duration: Duration in seconds of each audio chunk to be processed.
|
||||
"""
|
||||
if not os.path.isfile(audio_file_path):
|
||||
print(colored("The audio file was not found.", "red"))
|
||||
return
|
||||
|
||||
# Assuming `chunk_duration` is in seconds and `processor` can handle chunk-wise processing
|
||||
try:
|
||||
with torch.no_grad():
|
||||
# Load the whole audio file, but process and transcribe it in chunks
|
||||
audio_input = self.processor.audio_file_to_array(audio_file_path)
|
||||
sample_rate = audio_input.sampling_rate
|
||||
total_duration = len(audio_input.array) / sample_rate
|
||||
chunks = [
|
||||
audio_input.array[i : i + sample_rate * chunk_duration]
|
||||
for i in range(
|
||||
0, len(audio_input.array), sample_rate * chunk_duration
|
||||
)
|
||||
]
|
||||
|
||||
print(colored("Starting real-time transcription...", "green"))
|
||||
|
||||
for i, chunk in enumerate(chunks):
|
||||
# Process the current chunk
|
||||
processed_inputs = self.processor(
|
||||
chunk,
|
||||
sampling_rate=sample_rate,
|
||||
return_tensors="pt",
|
||||
padding=True,
|
||||
)
|
||||
processed_inputs = processed_inputs.input_values.to(self.device)
|
||||
|
||||
# Generate transcription for the chunk
|
||||
logits = self.model.generate(processed_inputs)
|
||||
transcription = self.processor.batch_decode(
|
||||
logits, skip_special_tokens=True
|
||||
)[0]
|
||||
|
||||
# Print the chunk's transcription
|
||||
print(
|
||||
colored(f"Chunk {i+1}/{len(chunks)}: ", "yellow")
|
||||
+ transcription
|
||||
)
|
||||
|
||||
# Wait for the chunk's duration to simulate real-time processing
|
||||
time.sleep(chunk_duration)
|
||||
|
||||
except Exception as e:
|
||||
print(colored(f"An error occurred during transcription: {e}", "red"))
|
||||
|
Loading…
Reference in new issue