parent
a8d392123e
commit
825b66b44b
@ -1,4 +1,4 @@
|
|||||||
from swarms.memory.vector_stores.pinecone import PineconeVector
|
from swarms.memory.vector_stores.pinecone import PineconeVector
|
||||||
from swarms.memory.vector_stores.base import BaseVectorStore
|
from swarms.memory.vector_stores.base import BaseVectorStore
|
||||||
from swarms.memory.vector_stores.pg import PgVectorVectorStore
|
from swarms.memory.vector_stores.pg import PgVectorVectorStore
|
||||||
from swarms.memory.ocean import OceanDB
|
from swarms.memory.ocean import OceanDB
|
||||||
|
@ -0,0 +1,65 @@
|
|||||||
|
"""Fuyu model by Kye"""
|
||||||
|
from transformers import (
|
||||||
|
FuyuForCausalLM,
|
||||||
|
AutoTokenizer,
|
||||||
|
FuyuProcessor,
|
||||||
|
FuyuImageProcessor,
|
||||||
|
)
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
|
||||||
|
class Fuyu:
|
||||||
|
"""
|
||||||
|
Fuyu model by Adept
|
||||||
|
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
pretrained_path : str
|
||||||
|
Path to the pretrained model
|
||||||
|
device_map : str
|
||||||
|
Device to use for the model
|
||||||
|
max_new_tokens : int
|
||||||
|
Maximum number of tokens to generate
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> fuyu = Fuyu()
|
||||||
|
>>> fuyu("Hello, my name is", "path/to/image.png")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
pretrained_path: str = "adept/fuyu-8b",
|
||||||
|
device_map: str = "cuda",
|
||||||
|
max_new_tokens: int = 7,
|
||||||
|
):
|
||||||
|
self.pretrained_path = pretrained_path
|
||||||
|
self.device_map = device_map
|
||||||
|
self.max_new_tokens = max_new_tokens
|
||||||
|
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_path)
|
||||||
|
self.image_processor = FuyuImageProcessor()
|
||||||
|
self.processor = FuyuProcessor(
|
||||||
|
image_procesor=self.image_processor, tokenizer=self.tokenizer
|
||||||
|
)
|
||||||
|
self.model = FuyuForCausalLM.from_pretrained(
|
||||||
|
pretrained_path, device_map=device_map
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(self, text, img_path):
|
||||||
|
"""Call the model"""
|
||||||
|
image_pil = Image.open(img_path)
|
||||||
|
model_inputs = self.processor(
|
||||||
|
text=text, images=[image_pil], device=self.device_map
|
||||||
|
)
|
||||||
|
|
||||||
|
for k, v in model_inputs.items():
|
||||||
|
model_inputs[k] = v.to(self.device_map)
|
||||||
|
|
||||||
|
output = self.model.generate(
|
||||||
|
**model_inputs, max_new_tokens=self.fmax_new_tokens
|
||||||
|
)
|
||||||
|
text = self.processor.batch_decode(output[:, -7:], skip_special_tokens=True)
|
@ -1 +1 @@
|
|||||||
from swarms.prompts.code_interpreter import CODE_INTERPRETER
|
from swarms.prompts.code_interpreter import CODE_INTERPRETER
|
||||||
|
@ -1,2 +1,2 @@
|
|||||||
from swarms.structs.workflow import Workflow
|
from swarms.structs.workflow import Workflow
|
||||||
from swarms.structs.task import Task
|
from swarms.structs.task import Task
|
||||||
|
@ -1,3 +1,2 @@
|
|||||||
|
|
||||||
from swarms.utils.display_markdown import display_markdown_message
|
from swarms.utils.display_markdown import display_markdown_message
|
||||||
from swarms.utils.futures import execute_futures_dict
|
from swarms.utils.futures import execute_futures_dict
|
||||||
|
@ -1,2 +1,2 @@
|
|||||||
from swarms.workers.worker import Worker
|
from swarms.workers.worker import Worker
|
||||||
from swarms.workers.base import AbstractWorker
|
from swarms.workers.base import AbstractWorker
|
||||||
|
Loading…
Reference in new issue