Former-commit-id: 9efcbff901a2e954643c4d475ecb1514652e60edclean-history
parent
f6c230e6cc
commit
8903f356d0
@ -1 +0,0 @@
|
|||||||
# from swarms.workers.worker import Worker
|
|
@ -1,301 +0,0 @@
|
|||||||
import os
|
|
||||||
import random
|
|
||||||
from typing import Dict, Union
|
|
||||||
|
|
||||||
import faiss
|
|
||||||
from langchain.chains.qa_with_sources.loading import (
|
|
||||||
load_qa_with_sources_chain,
|
|
||||||
)
|
|
||||||
from langchain.docstore import InMemoryDocstore
|
|
||||||
from langchain.embeddings import OpenAIEmbeddings
|
|
||||||
from langchain.tools import ReadFileTool, WriteFileTool
|
|
||||||
from langchain.tools.human.tool import HumanInputRun
|
|
||||||
from langchain.vectorstores import FAISS
|
|
||||||
from langchain_experimental.autonomous_agents import AutoGPT
|
|
||||||
|
|
||||||
from swarms.agents.message import Message
|
|
||||||
from swarms.tools.autogpt import (
|
|
||||||
WebpageQATool,
|
|
||||||
process_csv,
|
|
||||||
)
|
|
||||||
from swarms.utils.decorators import error_decorator, timing_decorator
|
|
||||||
|
|
||||||
# cache
|
|
||||||
ROOT_DIR = "./data/"
|
|
||||||
|
|
||||||
|
|
||||||
class Worker:
|
|
||||||
"""
|
|
||||||
Useful for when you need to spawn an autonomous agent instance as a worker to accomplish complex tasks,
|
|
||||||
it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on
|
|
||||||
|
|
||||||
Parameters:
|
|
||||||
- `model_name` (str): The name of the language model to be used (default: "gpt-4").
|
|
||||||
- `openai_api_key` (str): The OpenvAI API key (optional).
|
|
||||||
- `ai_name` (str): The name of the AI worker.
|
|
||||||
- `ai_role` (str): The role of the AI worker.
|
|
||||||
- `external_tools` (list): List of external tools (optional).
|
|
||||||
- `human_in_the_loop` (bool): Enable human-in-the-loop interaction (default: False).
|
|
||||||
- `temperature` (float): The temperature parameter for response generation (default: 0.5).
|
|
||||||
- `llm` (ChatOpenAI): Pre-initialized ChatOpenAI model instance (optional).
|
|
||||||
- `openai` (bool): If True, use the OpenAI language model; otherwise, use `llm` (default: True).
|
|
||||||
|
|
||||||
Usage
|
|
||||||
```
|
|
||||||
from swarms import Worker
|
|
||||||
|
|
||||||
node = Worker(
|
|
||||||
ai_name="Optimus Prime",
|
|
||||||
|
|
||||||
)
|
|
||||||
|
|
||||||
task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
|
|
||||||
response = node.run(task)
|
|
||||||
print(response)
|
|
||||||
```
|
|
||||||
|
|
||||||
llm + tools + memory
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
ai_name: str = "Autobot Swarm Worker",
|
|
||||||
ai_role: str = "Worker in a swarm",
|
|
||||||
external_tools=None,
|
|
||||||
human_in_the_loop=False,
|
|
||||||
temperature: float = 0.5,
|
|
||||||
llm=None,
|
|
||||||
openai_api_key: str = None,
|
|
||||||
):
|
|
||||||
self.temperature = temperature
|
|
||||||
self.human_in_the_loop = human_in_the_loop
|
|
||||||
self.llm = llm
|
|
||||||
self.openai_api_key = openai_api_key
|
|
||||||
self.ai_name = ai_name
|
|
||||||
self.ai_role = ai_role
|
|
||||||
self.coordinates = (
|
|
||||||
random.randint(0, 100),
|
|
||||||
random.randint(0, 100),
|
|
||||||
) # example coordinates for proximity
|
|
||||||
|
|
||||||
self.setup_tools(external_tools)
|
|
||||||
self.setup_memory()
|
|
||||||
self.setup_agent()
|
|
||||||
|
|
||||||
def reset(self):
|
|
||||||
"""
|
|
||||||
Reset the message history.
|
|
||||||
"""
|
|
||||||
self.message_history = ["Here is the conversation so far"]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def name(self):
|
|
||||||
"""Name of the agent"""
|
|
||||||
return self.ai_name
|
|
||||||
|
|
||||||
def receieve(self, name: str, message: str) -> None:
|
|
||||||
"""
|
|
||||||
Receive a message and update the message history.
|
|
||||||
|
|
||||||
Parameters:
|
|
||||||
- `name` (str): The name of the sender.
|
|
||||||
- `message` (str): The received message.
|
|
||||||
"""
|
|
||||||
self.message_history.append(f"{name}: {message}")
|
|
||||||
|
|
||||||
def send(self) -> str:
|
|
||||||
"""Send message history."""
|
|
||||||
self.agent.run(task=self.message_history)
|
|
||||||
|
|
||||||
def add(self, task, priority=0):
|
|
||||||
"""Add a task to the task queue."""
|
|
||||||
self.task_queue.append((priority, task))
|
|
||||||
|
|
||||||
def setup_tools(self, external_tools):
|
|
||||||
"""
|
|
||||||
Set up tools for the worker.
|
|
||||||
|
|
||||||
Parameters:
|
|
||||||
- `external_tools` (list): List of external tools (optional).
|
|
||||||
|
|
||||||
Example:
|
|
||||||
```
|
|
||||||
external_tools = [MyTool1(), MyTool2()]
|
|
||||||
worker = Worker(model_name="gpt-4",
|
|
||||||
openai_api_key="my_key",
|
|
||||||
ai_name="My Worker",
|
|
||||||
ai_role="Worker",
|
|
||||||
external_tools=external_tools,
|
|
||||||
human_in_the_loop=False,
|
|
||||||
temperature=0.5)
|
|
||||||
```
|
|
||||||
"""
|
|
||||||
query_website_tool = WebpageQATool(
|
|
||||||
qa_chain=load_qa_with_sources_chain(self.llm)
|
|
||||||
)
|
|
||||||
|
|
||||||
self.tools = [
|
|
||||||
WriteFileTool(root_dir=ROOT_DIR),
|
|
||||||
ReadFileTool(root_dir=ROOT_DIR),
|
|
||||||
process_csv,
|
|
||||||
query_website_tool,
|
|
||||||
HumanInputRun(),
|
|
||||||
# compile,
|
|
||||||
# VQAinference,
|
|
||||||
]
|
|
||||||
if external_tools is not None:
|
|
||||||
self.tools.extend(external_tools)
|
|
||||||
|
|
||||||
def setup_memory(self):
|
|
||||||
"""
|
|
||||||
Set up memory for the worker.
|
|
||||||
"""
|
|
||||||
openai_api_key = os.getenv("OPENAI_API_KEY") or self.openai_api_key
|
|
||||||
try:
|
|
||||||
embeddings_model = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
|
||||||
embedding_size = 1536
|
|
||||||
index = faiss.IndexFlatL2(embedding_size)
|
|
||||||
|
|
||||||
self.vectorstore = FAISS(
|
|
||||||
embeddings_model.embed_query, index, InMemoryDocstore({}), {}
|
|
||||||
)
|
|
||||||
|
|
||||||
except Exception as error:
|
|
||||||
raise RuntimeError(
|
|
||||||
"Error setting up memory perhaps try try tuning the embedding size:"
|
|
||||||
f" {error}"
|
|
||||||
)
|
|
||||||
|
|
||||||
def setup_agent(self):
|
|
||||||
"""
|
|
||||||
Set up the autonomous agent.
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
self.agent = AutoGPT.from_llm_and_tools(
|
|
||||||
ai_name=self.ai_name,
|
|
||||||
ai_role=self.ai_role,
|
|
||||||
tools=self.tools,
|
|
||||||
llm=self.llm,
|
|
||||||
memory=self.vectorstore.as_retriever(search_kwargs={"k": 8}),
|
|
||||||
human_in_the_loop=self.human_in_the_loop,
|
|
||||||
)
|
|
||||||
|
|
||||||
except Exception as error:
|
|
||||||
raise RuntimeError(f"Error setting up agent: {error}")
|
|
||||||
|
|
||||||
# @log_decorator
|
|
||||||
@error_decorator
|
|
||||||
@timing_decorator
|
|
||||||
def run(self, task: str = None):
|
|
||||||
"""
|
|
||||||
Run the autonomous agent on a given task.
|
|
||||||
|
|
||||||
Parameters:
|
|
||||||
- `task`: The task to be processed.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
- `result`: The result of the agent's processing.
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
result = self.agent.run([task])
|
|
||||||
return result
|
|
||||||
except Exception as error:
|
|
||||||
raise RuntimeError(f"Error while running agent: {error}")
|
|
||||||
|
|
||||||
# @log_decorator
|
|
||||||
@error_decorator
|
|
||||||
@timing_decorator
|
|
||||||
def __call__(self, task: str = None):
|
|
||||||
"""
|
|
||||||
Make the worker callable to run the agent on a given task.
|
|
||||||
|
|
||||||
Parameters:
|
|
||||||
- `task`: The task to be processed.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
- `results`: The results of the agent's processing.
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
results = self.agent.run([task])
|
|
||||||
return results
|
|
||||||
except Exception as error:
|
|
||||||
raise RuntimeError(f"Error while running agent: {error}")
|
|
||||||
|
|
||||||
def health_check(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
# @log_decorator
|
|
||||||
@error_decorator
|
|
||||||
@timing_decorator
|
|
||||||
def chat(self, msg: str = None, streaming: bool = False):
|
|
||||||
"""
|
|
||||||
Run chat
|
|
||||||
|
|
||||||
Args:
|
|
||||||
msg (str, optional): Message to send to the agent. Defaults to None.
|
|
||||||
language (str, optional): Language to use. Defaults to None.
|
|
||||||
streaming (bool, optional): Whether to stream the response. Defaults to False.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: Response from the agent
|
|
||||||
|
|
||||||
Usage:
|
|
||||||
--------------
|
|
||||||
agent = MultiModalAgent()
|
|
||||||
agent.chat("Hello")
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
# add users message to the history
|
|
||||||
self.history.append(Message("User", msg))
|
|
||||||
|
|
||||||
# process msg
|
|
||||||
try:
|
|
||||||
response = self.agent.run(msg)
|
|
||||||
|
|
||||||
# add agent's response to the history
|
|
||||||
self.history.append(Message("Agent", response))
|
|
||||||
|
|
||||||
# if streaming is = True
|
|
||||||
if streaming:
|
|
||||||
return self._stream_response(response)
|
|
||||||
else:
|
|
||||||
response
|
|
||||||
|
|
||||||
except Exception as error:
|
|
||||||
error_message = f"Error processing message: {str(error)}"
|
|
||||||
|
|
||||||
# add error to history
|
|
||||||
self.history.append(Message("Agent", error_message))
|
|
||||||
|
|
||||||
return error_message
|
|
||||||
|
|
||||||
def _stream_response(self, response: str = None):
|
|
||||||
"""
|
|
||||||
Yield the response token by token (word by word)
|
|
||||||
|
|
||||||
Usage:
|
|
||||||
--------------
|
|
||||||
for token in _stream_response(response):
|
|
||||||
print(token)
|
|
||||||
|
|
||||||
"""
|
|
||||||
for token in response.split():
|
|
||||||
yield token
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _message_to_dict(message: Union[Dict, str]):
|
|
||||||
"""Convert a message"""
|
|
||||||
if isinstance(message, str):
|
|
||||||
return {"content": message}
|
|
||||||
else:
|
|
||||||
return message
|
|
||||||
|
|
||||||
def is_within_proximity(self, other_worker):
|
|
||||||
"""Using Euclidean distance for proximity check"""
|
|
||||||
distance = (
|
|
||||||
(self.coordinates[0] - other_worker.coordinates[0]) ** 2
|
|
||||||
+ (self.coordinates[1] - other_worker.coordinates[1]) ** 2
|
|
||||||
) ** 0.5
|
|
||||||
return distance < 10 # threshold for proximity
|
|
Loading…
Reference in new issue