FIX: Layoutdocumentlm, swarm docs

Former-commit-id: 9efcbff901a2e954643c4d475ecb1514652e60ed
clean-history
Kye 1 year ago
parent f6c230e6cc
commit 8903f356d0

@ -220,6 +220,8 @@ Swarms framework is not just a tool but a robust, scalable, and secure partner i
## Community
- [Join the Swarms community here on Discord!](https://discord.gg/AJazBmhKnr)
# Discovery Call
Book a discovery call with the Swarms team to learn how to optimize and scale your swarm! [Click here to book a time that works for you!](https://calendly.com/swarm-corp/30min?month=2023-11)
# License
MIT

@ -4,7 +4,7 @@
Swarms is a modular framework that enables reliable and useful multi-agent collaboration at scale to automate real-world tasks.
<!--
[![GitHub issues](https://img.shields.io/github/issues/kyegomez/swarms)](https://github.com/kyegomez/swarms/issues) [![GitHub forks](https://img.shields.io/github/forks/kyegomez/swarms)](https://github.com/kyegomez/swarms/network) [![GitHub stars](https://img.shields.io/github/stars/kyegomez/swarms)](https://github.com/kyegomez/swarms/stargazers) [![GitHub license](https://img.shields.io/github/license/kyegomez/swarms)](https://github.com/kyegomez/swarms/blob/main/LICENSE)[![GitHub star chart](https://img.shields.io/github/stars/kyegomez/swarms?style=social)](https://star-history.com/#kyegomez/swarms)[![Dependency Status](https://img.shields.io/librariesio/github/kyegomez/swarms)](https://libraries.io/github/kyegomez/swarms) [![Downloads](https://static.pepy.tech/badge/swarms/month)](https://pepy.tech/project/swarms)
@ -14,7 +14,7 @@ Swarms is a modular framework that enables reliable and useful multi-agent colla
[![Share on Reddit](https://img.shields.io/badge/-Share%20on%20Reddit-orange)](https://www.reddit.com/submit?url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&title=Swarms%20-%20the%20future%20of%20AI) [![Share on Hacker News](https://img.shields.io/badge/-Share%20on%20Hacker%20News-orange)](https://news.ycombinator.com/submitlink?u=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&t=Swarms%20-%20the%20future%20of%20AI) [![Share on Pinterest](https://img.shields.io/badge/-Share%20on%20Pinterest-red)](https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&media=https%3A%2F%2Fexample.com%2Fimage.jpg&description=Swarms%20-%20the%20future%20of%20AI) [![Share on WhatsApp](https://img.shields.io/badge/-Share%20on%20WhatsApp-green)](https://api.whatsapp.com/send?text=Check%20out%20Swarms%20-%20the%20future%20of%20AI%20%23swarms%20%23AI%0A%0Ahttps%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms)
</div>
</div> -->
<!-- [![Swarm Fest](images/swarmfest.png)](https://github.com/users/kyegomez/projects/1) -->

@ -4,12 +4,8 @@ import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# disable tensorflow warnings
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
from swarms.agents import * # noqa: E402, F403
from swarms.swarms import * # noqa: E402, F403
from swarms.structs import * # noqa: E402, F403
from swarms.models import * # noqa: E402, F403
# from swarms.chunkers import * # noqa: E402, F403
from swarms.workers import * # noqa: E402, F403

@ -26,7 +26,9 @@ class LayoutLMDocumentQA:
model_name: str = "impira/layoutlm-document-qa",
task_type: str = "document-question-answering",
):
self.pipeline = pipeline(self.task_type, model=self.model_name)
self.model_name = model_name
self.task_type = task_type
self.pipeline = pipeline(task_type, model=self.model_name)
def __call__(self, task: str, img_path: str):
"""Call for model"""

@ -1,25 +1,13 @@
"""
TODO:
- add a method that scrapes all the methods from the llm object and outputs them as a string
- Add tools
- Add open interpreter style conversation
- Add memory vector database retrieval
- add batch processing
- add async processing for run and batch run
- add plan module
- concurrent
- Add batched inputs
"""
import asyncio
import re
import inspect
import json
import logging
import random
import re
import time
from typing import Any, Callable, Dict, List, Optional, Tuple
from termcolor import colored
import inspect
import random
from termcolor import colored
# Prompts
DYNAMIC_STOP_PROMPT = """

@ -1,6 +1,6 @@
from termcolor import colored
from swarms.prompts.autoblogen import (
from swarms.prompts.autobloggen import (
DRAFT_AGENT_SYSTEM_PROMPT,
REVIEW_PROMPT,
SOCIAL_MEDIA_SYSTEM_PROMPT_AGENT,

@ -2,20 +2,21 @@ import logging
import queue
import threading
from time import sleep
from swarms.utils.decorators import error_decorator, log_decorator, timing_decorator
from swarms.structs.flow import Flow
from typing import Dict, List, Callable
from typing import Callable, Dict, List
from termcolor import colored
from swarms.structs.flow import Flow
from swarms.utils.decorators import error_decorator, log_decorator, timing_decorator
class AutoScaler:
"""
The AutoScaler is like a kubernetes pod, that autoscales an agent or worker or boss!
# TODO Handle task assignment and task delegation
# TODO: User task => decomposed into very small sub tasks => sub tasks assigned to workers => workers complete and update the swarm, can ask for help from other agents.
# TODO: Missing, Task Assignment, Task delegation, Task completion, Swarm level communication with vector db
Wraps around a structure like SequentialWorkflow
and or Flow and parallelizes them on multiple threads so they're split across devices
and you can use them like that
Args:
initial_agents (int, optional): Number of initial agents. Defaults to 10.
@ -35,12 +36,13 @@ class AutoScaler:
Usage
```
# usage of usage
auto_scaler = AutoScaler(agent=YourCustomAgent)
auto_scaler.start()
from swarms.swarms import AutoScaler
from swarms.structs.flow import Flow
@AutoScaler
flow = Flow()
for i in range(100):
auto_scaler.add_task9f"task {I}})
flow.run("what is your name")
```
"""

@ -1 +0,0 @@
# from swarms.workers.worker import Worker

@ -1,301 +0,0 @@
import os
import random
from typing import Dict, Union
import faiss
from langchain.chains.qa_with_sources.loading import (
load_qa_with_sources_chain,
)
from langchain.docstore import InMemoryDocstore
from langchain.embeddings import OpenAIEmbeddings
from langchain.tools import ReadFileTool, WriteFileTool
from langchain.tools.human.tool import HumanInputRun
from langchain.vectorstores import FAISS
from langchain_experimental.autonomous_agents import AutoGPT
from swarms.agents.message import Message
from swarms.tools.autogpt import (
WebpageQATool,
process_csv,
)
from swarms.utils.decorators import error_decorator, timing_decorator
# cache
ROOT_DIR = "./data/"
class Worker:
"""
Useful for when you need to spawn an autonomous agent instance as a worker to accomplish complex tasks,
it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on
Parameters:
- `model_name` (str): The name of the language model to be used (default: "gpt-4").
- `openai_api_key` (str): The OpenvAI API key (optional).
- `ai_name` (str): The name of the AI worker.
- `ai_role` (str): The role of the AI worker.
- `external_tools` (list): List of external tools (optional).
- `human_in_the_loop` (bool): Enable human-in-the-loop interaction (default: False).
- `temperature` (float): The temperature parameter for response generation (default: 0.5).
- `llm` (ChatOpenAI): Pre-initialized ChatOpenAI model instance (optional).
- `openai` (bool): If True, use the OpenAI language model; otherwise, use `llm` (default: True).
Usage
```
from swarms import Worker
node = Worker(
ai_name="Optimus Prime",
)
task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
response = node.run(task)
print(response)
```
llm + tools + memory
"""
def __init__(
self,
ai_name: str = "Autobot Swarm Worker",
ai_role: str = "Worker in a swarm",
external_tools=None,
human_in_the_loop=False,
temperature: float = 0.5,
llm=None,
openai_api_key: str = None,
):
self.temperature = temperature
self.human_in_the_loop = human_in_the_loop
self.llm = llm
self.openai_api_key = openai_api_key
self.ai_name = ai_name
self.ai_role = ai_role
self.coordinates = (
random.randint(0, 100),
random.randint(0, 100),
) # example coordinates for proximity
self.setup_tools(external_tools)
self.setup_memory()
self.setup_agent()
def reset(self):
"""
Reset the message history.
"""
self.message_history = ["Here is the conversation so far"]
@property
def name(self):
"""Name of the agent"""
return self.ai_name
def receieve(self, name: str, message: str) -> None:
"""
Receive a message and update the message history.
Parameters:
- `name` (str): The name of the sender.
- `message` (str): The received message.
"""
self.message_history.append(f"{name}: {message}")
def send(self) -> str:
"""Send message history."""
self.agent.run(task=self.message_history)
def add(self, task, priority=0):
"""Add a task to the task queue."""
self.task_queue.append((priority, task))
def setup_tools(self, external_tools):
"""
Set up tools for the worker.
Parameters:
- `external_tools` (list): List of external tools (optional).
Example:
```
external_tools = [MyTool1(), MyTool2()]
worker = Worker(model_name="gpt-4",
openai_api_key="my_key",
ai_name="My Worker",
ai_role="Worker",
external_tools=external_tools,
human_in_the_loop=False,
temperature=0.5)
```
"""
query_website_tool = WebpageQATool(
qa_chain=load_qa_with_sources_chain(self.llm)
)
self.tools = [
WriteFileTool(root_dir=ROOT_DIR),
ReadFileTool(root_dir=ROOT_DIR),
process_csv,
query_website_tool,
HumanInputRun(),
# compile,
# VQAinference,
]
if external_tools is not None:
self.tools.extend(external_tools)
def setup_memory(self):
"""
Set up memory for the worker.
"""
openai_api_key = os.getenv("OPENAI_API_KEY") or self.openai_api_key
try:
embeddings_model = OpenAIEmbeddings(openai_api_key=openai_api_key)
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
self.vectorstore = FAISS(
embeddings_model.embed_query, index, InMemoryDocstore({}), {}
)
except Exception as error:
raise RuntimeError(
"Error setting up memory perhaps try try tuning the embedding size:"
f" {error}"
)
def setup_agent(self):
"""
Set up the autonomous agent.
"""
try:
self.agent = AutoGPT.from_llm_and_tools(
ai_name=self.ai_name,
ai_role=self.ai_role,
tools=self.tools,
llm=self.llm,
memory=self.vectorstore.as_retriever(search_kwargs={"k": 8}),
human_in_the_loop=self.human_in_the_loop,
)
except Exception as error:
raise RuntimeError(f"Error setting up agent: {error}")
# @log_decorator
@error_decorator
@timing_decorator
def run(self, task: str = None):
"""
Run the autonomous agent on a given task.
Parameters:
- `task`: The task to be processed.
Returns:
- `result`: The result of the agent's processing.
"""
try:
result = self.agent.run([task])
return result
except Exception as error:
raise RuntimeError(f"Error while running agent: {error}")
# @log_decorator
@error_decorator
@timing_decorator
def __call__(self, task: str = None):
"""
Make the worker callable to run the agent on a given task.
Parameters:
- `task`: The task to be processed.
Returns:
- `results`: The results of the agent's processing.
"""
try:
results = self.agent.run([task])
return results
except Exception as error:
raise RuntimeError(f"Error while running agent: {error}")
def health_check(self):
pass
# @log_decorator
@error_decorator
@timing_decorator
def chat(self, msg: str = None, streaming: bool = False):
"""
Run chat
Args:
msg (str, optional): Message to send to the agent. Defaults to None.
language (str, optional): Language to use. Defaults to None.
streaming (bool, optional): Whether to stream the response. Defaults to False.
Returns:
str: Response from the agent
Usage:
--------------
agent = MultiModalAgent()
agent.chat("Hello")
"""
# add users message to the history
self.history.append(Message("User", msg))
# process msg
try:
response = self.agent.run(msg)
# add agent's response to the history
self.history.append(Message("Agent", response))
# if streaming is = True
if streaming:
return self._stream_response(response)
else:
response
except Exception as error:
error_message = f"Error processing message: {str(error)}"
# add error to history
self.history.append(Message("Agent", error_message))
return error_message
def _stream_response(self, response: str = None):
"""
Yield the response token by token (word by word)
Usage:
--------------
for token in _stream_response(response):
print(token)
"""
for token in response.split():
yield token
@staticmethod
def _message_to_dict(message: Union[Dict, str]):
"""Convert a message"""
if isinstance(message, str):
return {"content": message}
else:
return message
def is_within_proximity(self, other_worker):
"""Using Euclidean distance for proximity check"""
distance = (
(self.coordinates[0] - other_worker.coordinates[0]) ** 2
+ (self.coordinates[1] - other_worker.coordinates[1]) ** 2
) ** 0.5
return distance < 10 # threshold for proximity
Loading…
Cancel
Save