parent
cb936eaef7
commit
8dfb1d33d0
@ -1,6 +0,0 @@
|
|||||||
def stream(response):
|
|
||||||
"""
|
|
||||||
Yield the response token by token (word by word) from llm
|
|
||||||
"""
|
|
||||||
for token in response.split():
|
|
||||||
yield token
|
|
@ -1,2 +0,0 @@
|
|||||||
# from swarms.embeddings.pegasus import PegasusEmbedding
|
|
||||||
from swarms.embeddings.simple_ada import get_ada_embeddings
|
|
@ -1,10 +0,0 @@
|
|||||||
# This file contains the function that embeds the input into a vector
|
|
||||||
from chromadb import EmbeddingFunction
|
|
||||||
|
|
||||||
|
|
||||||
def openai_embed(self, input, api_key, model_name):
|
|
||||||
openai = EmbeddingFunction.OpenAIEmbeddingFunction(
|
|
||||||
api_key=api_key, model_name=model_name
|
|
||||||
)
|
|
||||||
embedding = openai(input)
|
|
||||||
return embedding
|
|
@ -0,0 +1,214 @@
|
|||||||
|
import logging
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from numpy.linalg import norm
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||||
|
|
||||||
|
|
||||||
|
def cos_sim(a, b):
|
||||||
|
return a @ b.T / (norm(a) * norm(b))
|
||||||
|
|
||||||
|
|
||||||
|
class JinaEmbeddings:
|
||||||
|
"""
|
||||||
|
A class for running inference on a given model.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
model_id (str): The ID of the model.
|
||||||
|
device (str): The device to run the model on (either 'cuda' or 'cpu').
|
||||||
|
max_length (int): The maximum length of the output sequence.
|
||||||
|
quantize (bool, optional): Whether to use quantization. Defaults to False.
|
||||||
|
quantization_config (dict, optional): The configuration for quantization.
|
||||||
|
verbose (bool, optional): Whether to print verbose logs. Defaults to False.
|
||||||
|
logger (logging.Logger, optional): The logger to use. Defaults to a basic logger.
|
||||||
|
|
||||||
|
# Usage
|
||||||
|
```
|
||||||
|
from swarms.models import JinaEmbeddings
|
||||||
|
|
||||||
|
model = JinaEmbeddings()
|
||||||
|
|
||||||
|
embeddings = model("Encode this text")
|
||||||
|
|
||||||
|
print(embeddings)
|
||||||
|
|
||||||
|
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_id: str,
|
||||||
|
device: str = None,
|
||||||
|
max_length: int = 500,
|
||||||
|
quantize: bool = False,
|
||||||
|
quantization_config: dict = None,
|
||||||
|
verbose=False,
|
||||||
|
# logger=None,
|
||||||
|
distributed=False,
|
||||||
|
decoding=False,
|
||||||
|
cos_sim: bool = False,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
self.logger = logging.getLogger(__name__)
|
||||||
|
self.device = (
|
||||||
|
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
)
|
||||||
|
self.model_id = model_id
|
||||||
|
self.max_length = max_length
|
||||||
|
self.verbose = verbose
|
||||||
|
self.distributed = distributed
|
||||||
|
self.decoding = decoding
|
||||||
|
self.model, self.tokenizer = None, None
|
||||||
|
# self.log = Logging()
|
||||||
|
self.cos_sim = cos_sim
|
||||||
|
|
||||||
|
if self.distributed:
|
||||||
|
assert (
|
||||||
|
torch.cuda.device_count() > 1
|
||||||
|
), "You need more than 1 gpu for distributed processing"
|
||||||
|
|
||||||
|
bnb_config = None
|
||||||
|
if quantize:
|
||||||
|
if not quantization_config:
|
||||||
|
quantization_config = {
|
||||||
|
"load_in_4bit": True,
|
||||||
|
"bnb_4bit_use_double_quant": True,
|
||||||
|
"bnb_4bit_quant_type": "nf4",
|
||||||
|
"bnb_4bit_compute_dtype": torch.bfloat16,
|
||||||
|
}
|
||||||
|
bnb_config = BitsAndBytesConfig(**quantization_config)
|
||||||
|
|
||||||
|
try:
|
||||||
|
self.model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
self.model_id, quantization_config=bnb_config, trust_remote_code=True
|
||||||
|
)
|
||||||
|
|
||||||
|
self.model # .to(self.device)
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to load the model or the tokenizer: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def load_model(self):
|
||||||
|
"""Load the model"""
|
||||||
|
if not self.model or not self.tokenizer:
|
||||||
|
try:
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||||
|
|
||||||
|
bnb_config = (
|
||||||
|
BitsAndBytesConfig(**self.quantization_config)
|
||||||
|
if self.quantization_config
|
||||||
|
else None
|
||||||
|
)
|
||||||
|
|
||||||
|
self.model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
self.model_id,
|
||||||
|
quantization_config=bnb_config,
|
||||||
|
trust_remote_code=True,
|
||||||
|
).to(self.device)
|
||||||
|
|
||||||
|
if self.distributed:
|
||||||
|
self.model = DDP(self.model)
|
||||||
|
except Exception as error:
|
||||||
|
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def run(self, task: str):
|
||||||
|
"""
|
||||||
|
Generate a response based on the prompt text.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
- task (str): Text to prompt the model.
|
||||||
|
- max_length (int): Maximum length of the response.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- Generated text (str).
|
||||||
|
"""
|
||||||
|
self.load_model()
|
||||||
|
|
||||||
|
max_length = self.max_length
|
||||||
|
|
||||||
|
try:
|
||||||
|
embeddings = self.model.encode([task], max_length=max_length)
|
||||||
|
|
||||||
|
if self.cos_sim:
|
||||||
|
print(cos_sim(embeddings[0], embeddings[1]))
|
||||||
|
else:
|
||||||
|
return embeddings[0]
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to generate the text: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
async def run_async(self, task: str, *args, **kwargs) -> str:
|
||||||
|
"""
|
||||||
|
Run the model asynchronously
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): Task to run.
|
||||||
|
*args: Variable length argument list.
|
||||||
|
**kwargs: Arbitrary keyword arguments.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
|
||||||
|
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
|
||||||
|
'Once upon a time in a land far, far away...'
|
||||||
|
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
|
||||||
|
['In the deep jungles,',
|
||||||
|
'At the heart of the city,']
|
||||||
|
>>> mpt_instance.freeze_model()
|
||||||
|
>>> mpt_instance.unfreeze_model()
|
||||||
|
|
||||||
|
"""
|
||||||
|
# Wrapping synchronous calls with async
|
||||||
|
return self.run(task, *args, **kwargs)
|
||||||
|
|
||||||
|
def __call__(self, task: str):
|
||||||
|
"""
|
||||||
|
Generate a response based on the prompt text.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
- task (str): Text to prompt the model.
|
||||||
|
- max_length (int): Maximum length of the response.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- Generated text (str).
|
||||||
|
"""
|
||||||
|
self.load_model()
|
||||||
|
|
||||||
|
max_length = self.max_length
|
||||||
|
|
||||||
|
try:
|
||||||
|
embeddings = self.model.encode([task], max_length=max_length)
|
||||||
|
|
||||||
|
if self.cos_sim:
|
||||||
|
print(cos_sim(embeddings[0], embeddings[1]))
|
||||||
|
else:
|
||||||
|
return embeddings[0]
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to generate the text: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
async def __call_async__(self, task: str, *args, **kwargs) -> str:
|
||||||
|
"""Call the model asynchronously""" ""
|
||||||
|
return await self.run_async(task, *args, **kwargs)
|
||||||
|
|
||||||
|
def save_model(self, path: str):
|
||||||
|
"""Save the model to a given path"""
|
||||||
|
self.model.save_pretrained(path)
|
||||||
|
self.tokenizer.save_pretrained(path)
|
||||||
|
|
||||||
|
def gpu_available(self) -> bool:
|
||||||
|
"""Check if GPU is available"""
|
||||||
|
return torch.cuda.is_available()
|
||||||
|
|
||||||
|
def memory_consumption(self) -> dict:
|
||||||
|
"""Get the memory consumption of the GPU"""
|
||||||
|
if self.gpu_available():
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
allocated = torch.cuda.memory_allocated()
|
||||||
|
reserved = torch.cuda.memory_reserved()
|
||||||
|
return {"allocated": allocated, "reserved": reserved}
|
||||||
|
else:
|
||||||
|
return {"error": "GPU not available"}
|
@ -1,10 +1,9 @@
|
|||||||
import openai
|
import openai
|
||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
|
from os import getenv
|
||||||
|
|
||||||
load_dotenv()
|
load_dotenv()
|
||||||
|
|
||||||
from os import getenv
|
|
||||||
|
|
||||||
|
|
||||||
def get_ada_embeddings(text: str, model: str = "text-embedding-ada-002"):
|
def get_ada_embeddings(text: str, model: str = "text-embedding-ada-002"):
|
||||||
"""
|
"""
|
@ -0,0 +1,265 @@
|
|||||||
|
import logging
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||||
|
|
||||||
|
|
||||||
|
class YarnMistral128:
|
||||||
|
"""
|
||||||
|
A class for running inference on a given model.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
model_id (str): The ID of the model.
|
||||||
|
device (str): The device to run the model on (either 'cuda' or 'cpu').
|
||||||
|
max_length (int): The maximum length of the output sequence.
|
||||||
|
quantize (bool, optional): Whether to use quantization. Defaults to False.
|
||||||
|
quantization_config (dict, optional): The configuration for quantization.
|
||||||
|
verbose (bool, optional): Whether to print verbose logs. Defaults to False.
|
||||||
|
logger (logging.Logger, optional): The logger to use. Defaults to a basic logger.
|
||||||
|
|
||||||
|
# Usage
|
||||||
|
```
|
||||||
|
from finetuning_suite import Inference
|
||||||
|
|
||||||
|
model_id = "gpt2-small"
|
||||||
|
inference = Inference(model_id=model_id)
|
||||||
|
|
||||||
|
prompt_text = "Once upon a time"
|
||||||
|
generated_text = inference(prompt_text)
|
||||||
|
print(generated_text)
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_id: str = "NousResearch/Yarn-Mistral-7b-128k",
|
||||||
|
device: str = None,
|
||||||
|
max_length: int = 500,
|
||||||
|
quantize: bool = False,
|
||||||
|
quantization_config: dict = None,
|
||||||
|
verbose=False,
|
||||||
|
# logger=None,
|
||||||
|
distributed=False,
|
||||||
|
decoding=False,
|
||||||
|
):
|
||||||
|
self.logger = logging.getLogger(__name__)
|
||||||
|
self.device = (
|
||||||
|
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
)
|
||||||
|
self.model_id = model_id
|
||||||
|
self.max_length = max_length
|
||||||
|
self.verbose = verbose
|
||||||
|
self.distributed = distributed
|
||||||
|
self.decoding = decoding
|
||||||
|
self.model, self.tokenizer = None, None
|
||||||
|
# self.log = Logging()
|
||||||
|
|
||||||
|
if self.distributed:
|
||||||
|
assert (
|
||||||
|
torch.cuda.device_count() > 1
|
||||||
|
), "You need more than 1 gpu for distributed processing"
|
||||||
|
|
||||||
|
bnb_config = None
|
||||||
|
if quantize:
|
||||||
|
if not quantization_config:
|
||||||
|
quantization_config = {
|
||||||
|
"load_in_4bit": True,
|
||||||
|
"bnb_4bit_use_double_quant": True,
|
||||||
|
"bnb_4bit_quant_type": "nf4",
|
||||||
|
"bnb_4bit_compute_dtype": torch.bfloat16,
|
||||||
|
}
|
||||||
|
bnb_config = BitsAndBytesConfig(**quantization_config)
|
||||||
|
|
||||||
|
try:
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||||
|
self.model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
self.model_id,
|
||||||
|
quantization_config=bnb_config,
|
||||||
|
use_flash_attention_2=True,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
device_map="auto",
|
||||||
|
trust_remote_code=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.model # .to(self.device)
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to load the model or the tokenizer: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def load_model(self):
|
||||||
|
"""Load the model"""
|
||||||
|
if not self.model or not self.tokenizer:
|
||||||
|
try:
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||||
|
|
||||||
|
bnb_config = (
|
||||||
|
BitsAndBytesConfig(**self.quantization_config)
|
||||||
|
if self.quantization_config
|
||||||
|
else None
|
||||||
|
)
|
||||||
|
|
||||||
|
self.model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
self.model_id, quantization_config=bnb_config
|
||||||
|
).to(self.device)
|
||||||
|
|
||||||
|
if self.distributed:
|
||||||
|
self.model = DDP(self.model)
|
||||||
|
except Exception as error:
|
||||||
|
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def run(self, prompt_text: str):
|
||||||
|
"""
|
||||||
|
Generate a response based on the prompt text.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
- prompt_text (str): Text to prompt the model.
|
||||||
|
- max_length (int): Maximum length of the response.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- Generated text (str).
|
||||||
|
"""
|
||||||
|
self.load_model()
|
||||||
|
|
||||||
|
max_length = self.max_length
|
||||||
|
|
||||||
|
try:
|
||||||
|
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
|
||||||
|
self.device
|
||||||
|
)
|
||||||
|
|
||||||
|
# self.log.start()
|
||||||
|
|
||||||
|
if self.decoding:
|
||||||
|
with torch.no_grad():
|
||||||
|
for _ in range(max_length):
|
||||||
|
output_sequence = []
|
||||||
|
|
||||||
|
outputs = self.model.generate(
|
||||||
|
inputs, max_length=len(inputs) + 1, do_sample=True
|
||||||
|
)
|
||||||
|
output_tokens = outputs[0][-1]
|
||||||
|
output_sequence.append(output_tokens.item())
|
||||||
|
|
||||||
|
# print token in real-time
|
||||||
|
print(
|
||||||
|
self.tokenizer.decode(
|
||||||
|
[output_tokens], skip_special_tokens=True
|
||||||
|
),
|
||||||
|
end="",
|
||||||
|
flush=True,
|
||||||
|
)
|
||||||
|
inputs = outputs
|
||||||
|
else:
|
||||||
|
with torch.no_grad():
|
||||||
|
outputs = self.model.generate(
|
||||||
|
inputs, max_length=max_length, do_sample=True
|
||||||
|
)
|
||||||
|
|
||||||
|
del inputs
|
||||||
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to generate the text: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
async def run_async(self, task: str, *args, **kwargs) -> str:
|
||||||
|
"""
|
||||||
|
Run the model asynchronously
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): Task to run.
|
||||||
|
*args: Variable length argument list.
|
||||||
|
**kwargs: Arbitrary keyword arguments.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
|
||||||
|
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
|
||||||
|
'Once upon a time in a land far, far away...'
|
||||||
|
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
|
||||||
|
['In the deep jungles,',
|
||||||
|
'At the heart of the city,']
|
||||||
|
>>> mpt_instance.freeze_model()
|
||||||
|
>>> mpt_instance.unfreeze_model()
|
||||||
|
|
||||||
|
"""
|
||||||
|
# Wrapping synchronous calls with async
|
||||||
|
return self.run(task, *args, **kwargs)
|
||||||
|
|
||||||
|
def __call__(self, prompt_text: str):
|
||||||
|
"""
|
||||||
|
Generate a response based on the prompt text.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
- prompt_text (str): Text to prompt the model.
|
||||||
|
- max_length (int): Maximum length of the response.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- Generated text (str).
|
||||||
|
"""
|
||||||
|
self.load_model()
|
||||||
|
|
||||||
|
max_length = self.max_
|
||||||
|
|
||||||
|
try:
|
||||||
|
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
|
||||||
|
self.device
|
||||||
|
)
|
||||||
|
|
||||||
|
# self.log.start()
|
||||||
|
|
||||||
|
if self.decoding:
|
||||||
|
with torch.no_grad():
|
||||||
|
for _ in range(max_length):
|
||||||
|
output_sequence = []
|
||||||
|
|
||||||
|
outputs = self.model.generate(
|
||||||
|
inputs, max_length=len(inputs) + 1, do_sample=True
|
||||||
|
)
|
||||||
|
output_tokens = outputs[0][-1]
|
||||||
|
output_sequence.append(output_tokens.item())
|
||||||
|
|
||||||
|
# print token in real-time
|
||||||
|
print(
|
||||||
|
self.tokenizer.decode(
|
||||||
|
[output_tokens], skip_special_tokens=True
|
||||||
|
),
|
||||||
|
end="",
|
||||||
|
flush=True,
|
||||||
|
)
|
||||||
|
inputs = outputs
|
||||||
|
else:
|
||||||
|
with torch.no_grad():
|
||||||
|
outputs = self.model.generate(
|
||||||
|
inputs, max_length=max_length, do_sample=True
|
||||||
|
)
|
||||||
|
|
||||||
|
del inputs
|
||||||
|
|
||||||
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to generate the text: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
async def __call_async__(self, task: str, *args, **kwargs) -> str:
|
||||||
|
"""Call the model asynchronously""" ""
|
||||||
|
return await self.run_async(task, *args, **kwargs)
|
||||||
|
|
||||||
|
def save_model(self, path: str):
|
||||||
|
"""Save the model to a given path"""
|
||||||
|
self.model.save_pretrained(path)
|
||||||
|
self.tokenizer.save_pretrained(path)
|
||||||
|
|
||||||
|
def gpu_available(self) -> bool:
|
||||||
|
"""Check if GPU is available"""
|
||||||
|
return torch.cuda.is_available()
|
||||||
|
|
||||||
|
def memory_consumption(self) -> dict:
|
||||||
|
"""Get the memory consumption of the GPU"""
|
||||||
|
if self.gpu_available():
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
allocated = torch.cuda.memory_allocated()
|
||||||
|
reserved = torch.cuda.memory_reserved()
|
||||||
|
return {"allocated": allocated, "reserved": reserved}
|
||||||
|
else:
|
||||||
|
return {"error": "GPU not available"}
|
@ -0,0 +1,20 @@
|
|||||||
|
"""
|
||||||
|
Sequential Workflow
|
||||||
|
|
||||||
|
from swarms.models import OpenAIChat, Mistral
|
||||||
|
from swarms.structs import SequentialWorkflow
|
||||||
|
|
||||||
|
|
||||||
|
llm = OpenAIChat(openai_api_key="")
|
||||||
|
mistral = Mistral()
|
||||||
|
|
||||||
|
# Max loops will run over the sequential pipeline twice
|
||||||
|
workflow = SequentialWorkflow(max_loops=2)
|
||||||
|
|
||||||
|
workflow.add("What's the weather in miami", llm)
|
||||||
|
|
||||||
|
workflow.add("Create a report on these metrics", mistral)
|
||||||
|
|
||||||
|
workflow.run()
|
||||||
|
|
||||||
|
"""
|
Loading…
Reference in new issue