parent
cb936eaef7
commit
8dfb1d33d0
@ -1,6 +0,0 @@
|
||||
def stream(response):
|
||||
"""
|
||||
Yield the response token by token (word by word) from llm
|
||||
"""
|
||||
for token in response.split():
|
||||
yield token
|
@ -1,2 +0,0 @@
|
||||
# from swarms.embeddings.pegasus import PegasusEmbedding
|
||||
from swarms.embeddings.simple_ada import get_ada_embeddings
|
@ -1,10 +0,0 @@
|
||||
# This file contains the function that embeds the input into a vector
|
||||
from chromadb import EmbeddingFunction
|
||||
|
||||
|
||||
def openai_embed(self, input, api_key, model_name):
|
||||
openai = EmbeddingFunction.OpenAIEmbeddingFunction(
|
||||
api_key=api_key, model_name=model_name
|
||||
)
|
||||
embedding = openai(input)
|
||||
return embedding
|
@ -0,0 +1,214 @@
|
||||
import logging
|
||||
|
||||
import torch
|
||||
from numpy.linalg import norm
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
|
||||
def cos_sim(a, b):
|
||||
return a @ b.T / (norm(a) * norm(b))
|
||||
|
||||
|
||||
class JinaEmbeddings:
|
||||
"""
|
||||
A class for running inference on a given model.
|
||||
|
||||
Attributes:
|
||||
model_id (str): The ID of the model.
|
||||
device (str): The device to run the model on (either 'cuda' or 'cpu').
|
||||
max_length (int): The maximum length of the output sequence.
|
||||
quantize (bool, optional): Whether to use quantization. Defaults to False.
|
||||
quantization_config (dict, optional): The configuration for quantization.
|
||||
verbose (bool, optional): Whether to print verbose logs. Defaults to False.
|
||||
logger (logging.Logger, optional): The logger to use. Defaults to a basic logger.
|
||||
|
||||
# Usage
|
||||
```
|
||||
from swarms.models import JinaEmbeddings
|
||||
|
||||
model = JinaEmbeddings()
|
||||
|
||||
embeddings = model("Encode this text")
|
||||
|
||||
print(embeddings)
|
||||
|
||||
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
device: str = None,
|
||||
max_length: int = 500,
|
||||
quantize: bool = False,
|
||||
quantization_config: dict = None,
|
||||
verbose=False,
|
||||
# logger=None,
|
||||
distributed=False,
|
||||
decoding=False,
|
||||
cos_sim: bool = False,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
self.logger = logging.getLogger(__name__)
|
||||
self.device = (
|
||||
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
|
||||
)
|
||||
self.model_id = model_id
|
||||
self.max_length = max_length
|
||||
self.verbose = verbose
|
||||
self.distributed = distributed
|
||||
self.decoding = decoding
|
||||
self.model, self.tokenizer = None, None
|
||||
# self.log = Logging()
|
||||
self.cos_sim = cos_sim
|
||||
|
||||
if self.distributed:
|
||||
assert (
|
||||
torch.cuda.device_count() > 1
|
||||
), "You need more than 1 gpu for distributed processing"
|
||||
|
||||
bnb_config = None
|
||||
if quantize:
|
||||
if not quantization_config:
|
||||
quantization_config = {
|
||||
"load_in_4bit": True,
|
||||
"bnb_4bit_use_double_quant": True,
|
||||
"bnb_4bit_quant_type": "nf4",
|
||||
"bnb_4bit_compute_dtype": torch.bfloat16,
|
||||
}
|
||||
bnb_config = BitsAndBytesConfig(**quantization_config)
|
||||
|
||||
try:
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
self.model_id, quantization_config=bnb_config, trust_remote_code=True
|
||||
)
|
||||
|
||||
self.model # .to(self.device)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to load the model or the tokenizer: {e}")
|
||||
raise
|
||||
|
||||
def load_model(self):
|
||||
"""Load the model"""
|
||||
if not self.model or not self.tokenizer:
|
||||
try:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||
|
||||
bnb_config = (
|
||||
BitsAndBytesConfig(**self.quantization_config)
|
||||
if self.quantization_config
|
||||
else None
|
||||
)
|
||||
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
self.model_id,
|
||||
quantization_config=bnb_config,
|
||||
trust_remote_code=True,
|
||||
).to(self.device)
|
||||
|
||||
if self.distributed:
|
||||
self.model = DDP(self.model)
|
||||
except Exception as error:
|
||||
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
|
||||
raise
|
||||
|
||||
def run(self, task: str):
|
||||
"""
|
||||
Generate a response based on the prompt text.
|
||||
|
||||
Args:
|
||||
- task (str): Text to prompt the model.
|
||||
- max_length (int): Maximum length of the response.
|
||||
|
||||
Returns:
|
||||
- Generated text (str).
|
||||
"""
|
||||
self.load_model()
|
||||
|
||||
max_length = self.max_length
|
||||
|
||||
try:
|
||||
embeddings = self.model.encode([task], max_length=max_length)
|
||||
|
||||
if self.cos_sim:
|
||||
print(cos_sim(embeddings[0], embeddings[1]))
|
||||
else:
|
||||
return embeddings[0]
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to generate the text: {e}")
|
||||
raise
|
||||
|
||||
async def run_async(self, task: str, *args, **kwargs) -> str:
|
||||
"""
|
||||
Run the model asynchronously
|
||||
|
||||
Args:
|
||||
task (str): Task to run.
|
||||
*args: Variable length argument list.
|
||||
**kwargs: Arbitrary keyword arguments.
|
||||
|
||||
Examples:
|
||||
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
|
||||
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
|
||||
'Once upon a time in a land far, far away...'
|
||||
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
|
||||
['In the deep jungles,',
|
||||
'At the heart of the city,']
|
||||
>>> mpt_instance.freeze_model()
|
||||
>>> mpt_instance.unfreeze_model()
|
||||
|
||||
"""
|
||||
# Wrapping synchronous calls with async
|
||||
return self.run(task, *args, **kwargs)
|
||||
|
||||
def __call__(self, task: str):
|
||||
"""
|
||||
Generate a response based on the prompt text.
|
||||
|
||||
Args:
|
||||
- task (str): Text to prompt the model.
|
||||
- max_length (int): Maximum length of the response.
|
||||
|
||||
Returns:
|
||||
- Generated text (str).
|
||||
"""
|
||||
self.load_model()
|
||||
|
||||
max_length = self.max_length
|
||||
|
||||
try:
|
||||
embeddings = self.model.encode([task], max_length=max_length)
|
||||
|
||||
if self.cos_sim:
|
||||
print(cos_sim(embeddings[0], embeddings[1]))
|
||||
else:
|
||||
return embeddings[0]
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to generate the text: {e}")
|
||||
raise
|
||||
|
||||
async def __call_async__(self, task: str, *args, **kwargs) -> str:
|
||||
"""Call the model asynchronously""" ""
|
||||
return await self.run_async(task, *args, **kwargs)
|
||||
|
||||
def save_model(self, path: str):
|
||||
"""Save the model to a given path"""
|
||||
self.model.save_pretrained(path)
|
||||
self.tokenizer.save_pretrained(path)
|
||||
|
||||
def gpu_available(self) -> bool:
|
||||
"""Check if GPU is available"""
|
||||
return torch.cuda.is_available()
|
||||
|
||||
def memory_consumption(self) -> dict:
|
||||
"""Get the memory consumption of the GPU"""
|
||||
if self.gpu_available():
|
||||
torch.cuda.synchronize()
|
||||
allocated = torch.cuda.memory_allocated()
|
||||
reserved = torch.cuda.memory_reserved()
|
||||
return {"allocated": allocated, "reserved": reserved}
|
||||
else:
|
||||
return {"error": "GPU not available"}
|
@ -1,10 +1,9 @@
|
||||
import openai
|
||||
from dotenv import load_dotenv
|
||||
from os import getenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
from os import getenv
|
||||
|
||||
|
||||
def get_ada_embeddings(text: str, model: str = "text-embedding-ada-002"):
|
||||
"""
|
@ -0,0 +1,265 @@
|
||||
import logging
|
||||
|
||||
import torch
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
|
||||
class YarnMistral128:
|
||||
"""
|
||||
A class for running inference on a given model.
|
||||
|
||||
Attributes:
|
||||
model_id (str): The ID of the model.
|
||||
device (str): The device to run the model on (either 'cuda' or 'cpu').
|
||||
max_length (int): The maximum length of the output sequence.
|
||||
quantize (bool, optional): Whether to use quantization. Defaults to False.
|
||||
quantization_config (dict, optional): The configuration for quantization.
|
||||
verbose (bool, optional): Whether to print verbose logs. Defaults to False.
|
||||
logger (logging.Logger, optional): The logger to use. Defaults to a basic logger.
|
||||
|
||||
# Usage
|
||||
```
|
||||
from finetuning_suite import Inference
|
||||
|
||||
model_id = "gpt2-small"
|
||||
inference = Inference(model_id=model_id)
|
||||
|
||||
prompt_text = "Once upon a time"
|
||||
generated_text = inference(prompt_text)
|
||||
print(generated_text)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str = "NousResearch/Yarn-Mistral-7b-128k",
|
||||
device: str = None,
|
||||
max_length: int = 500,
|
||||
quantize: bool = False,
|
||||
quantization_config: dict = None,
|
||||
verbose=False,
|
||||
# logger=None,
|
||||
distributed=False,
|
||||
decoding=False,
|
||||
):
|
||||
self.logger = logging.getLogger(__name__)
|
||||
self.device = (
|
||||
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
|
||||
)
|
||||
self.model_id = model_id
|
||||
self.max_length = max_length
|
||||
self.verbose = verbose
|
||||
self.distributed = distributed
|
||||
self.decoding = decoding
|
||||
self.model, self.tokenizer = None, None
|
||||
# self.log = Logging()
|
||||
|
||||
if self.distributed:
|
||||
assert (
|
||||
torch.cuda.device_count() > 1
|
||||
), "You need more than 1 gpu for distributed processing"
|
||||
|
||||
bnb_config = None
|
||||
if quantize:
|
||||
if not quantization_config:
|
||||
quantization_config = {
|
||||
"load_in_4bit": True,
|
||||
"bnb_4bit_use_double_quant": True,
|
||||
"bnb_4bit_quant_type": "nf4",
|
||||
"bnb_4bit_compute_dtype": torch.bfloat16,
|
||||
}
|
||||
bnb_config = BitsAndBytesConfig(**quantization_config)
|
||||
|
||||
try:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
self.model_id,
|
||||
quantization_config=bnb_config,
|
||||
use_flash_attention_2=True,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
trust_remote_code=True,
|
||||
)
|
||||
|
||||
self.model # .to(self.device)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to load the model or the tokenizer: {e}")
|
||||
raise
|
||||
|
||||
def load_model(self):
|
||||
"""Load the model"""
|
||||
if not self.model or not self.tokenizer:
|
||||
try:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||
|
||||
bnb_config = (
|
||||
BitsAndBytesConfig(**self.quantization_config)
|
||||
if self.quantization_config
|
||||
else None
|
||||
)
|
||||
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
self.model_id, quantization_config=bnb_config
|
||||
).to(self.device)
|
||||
|
||||
if self.distributed:
|
||||
self.model = DDP(self.model)
|
||||
except Exception as error:
|
||||
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
|
||||
raise
|
||||
|
||||
def run(self, prompt_text: str):
|
||||
"""
|
||||
Generate a response based on the prompt text.
|
||||
|
||||
Args:
|
||||
- prompt_text (str): Text to prompt the model.
|
||||
- max_length (int): Maximum length of the response.
|
||||
|
||||
Returns:
|
||||
- Generated text (str).
|
||||
"""
|
||||
self.load_model()
|
||||
|
||||
max_length = self.max_length
|
||||
|
||||
try:
|
||||
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
|
||||
self.device
|
||||
)
|
||||
|
||||
# self.log.start()
|
||||
|
||||
if self.decoding:
|
||||
with torch.no_grad():
|
||||
for _ in range(max_length):
|
||||
output_sequence = []
|
||||
|
||||
outputs = self.model.generate(
|
||||
inputs, max_length=len(inputs) + 1, do_sample=True
|
||||
)
|
||||
output_tokens = outputs[0][-1]
|
||||
output_sequence.append(output_tokens.item())
|
||||
|
||||
# print token in real-time
|
||||
print(
|
||||
self.tokenizer.decode(
|
||||
[output_tokens], skip_special_tokens=True
|
||||
),
|
||||
end="",
|
||||
flush=True,
|
||||
)
|
||||
inputs = outputs
|
||||
else:
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(
|
||||
inputs, max_length=max_length, do_sample=True
|
||||
)
|
||||
|
||||
del inputs
|
||||
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to generate the text: {e}")
|
||||
raise
|
||||
|
||||
async def run_async(self, task: str, *args, **kwargs) -> str:
|
||||
"""
|
||||
Run the model asynchronously
|
||||
|
||||
Args:
|
||||
task (str): Task to run.
|
||||
*args: Variable length argument list.
|
||||
**kwargs: Arbitrary keyword arguments.
|
||||
|
||||
Examples:
|
||||
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
|
||||
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
|
||||
'Once upon a time in a land far, far away...'
|
||||
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
|
||||
['In the deep jungles,',
|
||||
'At the heart of the city,']
|
||||
>>> mpt_instance.freeze_model()
|
||||
>>> mpt_instance.unfreeze_model()
|
||||
|
||||
"""
|
||||
# Wrapping synchronous calls with async
|
||||
return self.run(task, *args, **kwargs)
|
||||
|
||||
def __call__(self, prompt_text: str):
|
||||
"""
|
||||
Generate a response based on the prompt text.
|
||||
|
||||
Args:
|
||||
- prompt_text (str): Text to prompt the model.
|
||||
- max_length (int): Maximum length of the response.
|
||||
|
||||
Returns:
|
||||
- Generated text (str).
|
||||
"""
|
||||
self.load_model()
|
||||
|
||||
max_length = self.max_
|
||||
|
||||
try:
|
||||
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
|
||||
self.device
|
||||
)
|
||||
|
||||
# self.log.start()
|
||||
|
||||
if self.decoding:
|
||||
with torch.no_grad():
|
||||
for _ in range(max_length):
|
||||
output_sequence = []
|
||||
|
||||
outputs = self.model.generate(
|
||||
inputs, max_length=len(inputs) + 1, do_sample=True
|
||||
)
|
||||
output_tokens = outputs[0][-1]
|
||||
output_sequence.append(output_tokens.item())
|
||||
|
||||
# print token in real-time
|
||||
print(
|
||||
self.tokenizer.decode(
|
||||
[output_tokens], skip_special_tokens=True
|
||||
),
|
||||
end="",
|
||||
flush=True,
|
||||
)
|
||||
inputs = outputs
|
||||
else:
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(
|
||||
inputs, max_length=max_length, do_sample=True
|
||||
)
|
||||
|
||||
del inputs
|
||||
|
||||
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to generate the text: {e}")
|
||||
raise
|
||||
|
||||
async def __call_async__(self, task: str, *args, **kwargs) -> str:
|
||||
"""Call the model asynchronously""" ""
|
||||
return await self.run_async(task, *args, **kwargs)
|
||||
|
||||
def save_model(self, path: str):
|
||||
"""Save the model to a given path"""
|
||||
self.model.save_pretrained(path)
|
||||
self.tokenizer.save_pretrained(path)
|
||||
|
||||
def gpu_available(self) -> bool:
|
||||
"""Check if GPU is available"""
|
||||
return torch.cuda.is_available()
|
||||
|
||||
def memory_consumption(self) -> dict:
|
||||
"""Get the memory consumption of the GPU"""
|
||||
if self.gpu_available():
|
||||
torch.cuda.synchronize()
|
||||
allocated = torch.cuda.memory_allocated()
|
||||
reserved = torch.cuda.memory_reserved()
|
||||
return {"allocated": allocated, "reserved": reserved}
|
||||
else:
|
||||
return {"error": "GPU not available"}
|
@ -0,0 +1,20 @@
|
||||
"""
|
||||
Sequential Workflow
|
||||
|
||||
from swarms.models import OpenAIChat, Mistral
|
||||
from swarms.structs import SequentialWorkflow
|
||||
|
||||
|
||||
llm = OpenAIChat(openai_api_key="")
|
||||
mistral = Mistral()
|
||||
|
||||
# Max loops will run over the sequential pipeline twice
|
||||
workflow = SequentialWorkflow(max_loops=2)
|
||||
|
||||
workflow.add("What's the weather in miami", llm)
|
||||
|
||||
workflow.add("Create a report on these metrics", mistral)
|
||||
|
||||
workflow.run()
|
||||
|
||||
"""
|
Loading…
Reference in new issue