parent
713a0ebaf8
commit
9733541cc7
@ -0,0 +1,89 @@
|
|||||||
|
from swarms.models import OpenAIChat
|
||||||
|
from swarms.workers import Worker
|
||||||
|
from swarms.tools.autogpt import tool
|
||||||
|
from swarms.agents.hf_agents import HFAgent
|
||||||
|
from swarms.agents.omni_modal_agent import OmniModalAgent
|
||||||
|
|
||||||
|
#Initialize API Key
|
||||||
|
api_key = ""
|
||||||
|
|
||||||
|
|
||||||
|
# Initialize the language model,
|
||||||
|
# This model can be swapped out with Anthropic, ETC, Huggingface Models like Mistral, ETC
|
||||||
|
llm = OpenAIChat(
|
||||||
|
openai_api_key=api_key,
|
||||||
|
temperature=0.5,
|
||||||
|
)
|
||||||
|
|
||||||
|
#wrap a function with the tool decorator to make it a tool
|
||||||
|
@tool
|
||||||
|
def hf_agent(task: str = None):
|
||||||
|
"""
|
||||||
|
An tool that uses an openai model to call and respond to a task by search for a model on huggingface
|
||||||
|
It first downloads the model then uses it.
|
||||||
|
|
||||||
|
Rules: Don't call this model for simple tasks like generating a summary, only call this tool for multi modal tasks like generating images, videos, speech, etc
|
||||||
|
|
||||||
|
"""
|
||||||
|
agent = HFAgent(model="text-davinci-003", api_key=api_key)
|
||||||
|
response = agent.run(task, text="¡Este es un API muy agradable!")
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
#wrap a function with the tool decorator to make it a tool
|
||||||
|
@tool
|
||||||
|
def omni_agent(task: str = None):
|
||||||
|
"""
|
||||||
|
An tool that uses an openai Model to utilize and call huggingface models and guide them to perform a task.
|
||||||
|
|
||||||
|
Rules: Don't call this model for simple tasks like generating a summary, only call this tool for multi modal tasks like generating images, videos, speech
|
||||||
|
The following tasks are what this tool should be used for:
|
||||||
|
|
||||||
|
Tasks omni agent is good for:
|
||||||
|
--------------
|
||||||
|
document-question-answering
|
||||||
|
image-captioning
|
||||||
|
image-question-answering
|
||||||
|
image-segmentation
|
||||||
|
speech-to-text
|
||||||
|
summarization
|
||||||
|
text-classification
|
||||||
|
text-question-answering
|
||||||
|
translation
|
||||||
|
huggingface-tools/text-to-image
|
||||||
|
huggingface-tools/text-to-video
|
||||||
|
text-to-speech
|
||||||
|
huggingface-tools/text-download
|
||||||
|
huggingface-tools/image-transformation
|
||||||
|
"""
|
||||||
|
agent = OmniModalAgent(llm)
|
||||||
|
response = agent.run(task)
|
||||||
|
return response
|
||||||
|
|
||||||
|
# Append tools to an list
|
||||||
|
tools = [
|
||||||
|
hf_agent,
|
||||||
|
omni_agent,
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
#Initialize a single Worker node with previously defined tools in addition to it's
|
||||||
|
# predefined tools
|
||||||
|
node = Worker(
|
||||||
|
llm=llm,
|
||||||
|
ai_name="Optimus Prime",
|
||||||
|
openai_api_key=api_key,
|
||||||
|
ai_role="Worker in a swarm",
|
||||||
|
external_tools=tools,
|
||||||
|
human_in_the_loop=False,
|
||||||
|
temperature=0.5,
|
||||||
|
)
|
||||||
|
|
||||||
|
#Specify task
|
||||||
|
task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
|
||||||
|
|
||||||
|
# Run the node on the task
|
||||||
|
response = node.run(task)
|
||||||
|
|
||||||
|
# Print the response
|
||||||
|
print(response)
|
@ -1,186 +0,0 @@
|
|||||||
import json
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
from langchain.tools.base import BaseTool
|
|
||||||
|
|
||||||
FINISH_NAME = "finish"
|
|
||||||
|
|
||||||
|
|
||||||
class PromptGenerator:
|
|
||||||
"""A class for generating custom prompt strings.
|
|
||||||
|
|
||||||
Does this based on constraints, commands, resources, and performance evaluations.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self) -> None:
|
|
||||||
"""Initialize the PromptGenerator object.
|
|
||||||
|
|
||||||
Starts with empty lists of constraints, commands, resources,
|
|
||||||
and performance evaluations.
|
|
||||||
"""
|
|
||||||
self.constraints: List[str] = []
|
|
||||||
self.commands: List[BaseTool] = []
|
|
||||||
self.resources: List[str] = []
|
|
||||||
self.performance_evaluation: List[str] = []
|
|
||||||
self.response_format = {
|
|
||||||
"thoughts": {
|
|
||||||
"text": "thought",
|
|
||||||
"reasoning": "reasoning",
|
|
||||||
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
|
|
||||||
"criticism": "constructive self-criticism",
|
|
||||||
"speak": "thoughts summary to say to user",
|
|
||||||
},
|
|
||||||
"command": {"name": "command name", "args": {"arg name": "value"}},
|
|
||||||
}
|
|
||||||
|
|
||||||
def add_constraint(self, constraint: str) -> None:
|
|
||||||
"""
|
|
||||||
Add a constraint to the constraints list.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
constraint (str): The constraint to be added.
|
|
||||||
"""
|
|
||||||
self.constraints.append(constraint)
|
|
||||||
|
|
||||||
def add_tool(self, tool: BaseTool) -> None:
|
|
||||||
self.commands.append(tool)
|
|
||||||
|
|
||||||
def _generate_command_string(self, tool: BaseTool) -> str:
|
|
||||||
output = f"{tool.name}: {tool.description}"
|
|
||||||
output += f", args json schema: {json.dumps(tool.args)}"
|
|
||||||
return output
|
|
||||||
|
|
||||||
def add_resource(self, resource: str) -> None:
|
|
||||||
"""
|
|
||||||
Add a resource to the resources list.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
resource (str): The resource to be added.
|
|
||||||
"""
|
|
||||||
self.resources.append(resource)
|
|
||||||
|
|
||||||
def add_performance_evaluation(self, evaluation: str) -> None:
|
|
||||||
"""
|
|
||||||
Add a performance evaluation item to the performance_evaluation list.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
evaluation (str): The evaluation item to be added.
|
|
||||||
"""
|
|
||||||
self.performance_evaluation.append(evaluation)
|
|
||||||
|
|
||||||
def _generate_numbered_list(self, items: list, item_type: str = "list") -> str:
|
|
||||||
"""
|
|
||||||
Generate a numbered list from given items based on the item_type.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
items (list): A list of items to be numbered.
|
|
||||||
item_type (str, optional): The type of items in the list.
|
|
||||||
Defaults to 'list'.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: The formatted numbered list.
|
|
||||||
"""
|
|
||||||
if item_type == "command":
|
|
||||||
command_strings = [
|
|
||||||
f"{i + 1}. {self._generate_command_string(item)}"
|
|
||||||
for i, item in enumerate(items)
|
|
||||||
]
|
|
||||||
finish_description = (
|
|
||||||
"use this to signal that you have finished all your objectives"
|
|
||||||
)
|
|
||||||
finish_args = (
|
|
||||||
'"response": "final response to let '
|
|
||||||
'people know you have finished your objectives"'
|
|
||||||
)
|
|
||||||
finish_string = (
|
|
||||||
f"{len(items) + 1}. {FINISH_NAME}: "
|
|
||||||
f"{finish_description}, args: {finish_args}"
|
|
||||||
)
|
|
||||||
return "\n".join(command_strings + [finish_string])
|
|
||||||
else:
|
|
||||||
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
|
|
||||||
|
|
||||||
def generate_prompt_string(self) -> str:
|
|
||||||
"""Generate a prompt string.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: The generated prompt string.
|
|
||||||
"""
|
|
||||||
formatted_response_format = json.dumps(self.response_format, indent=4)
|
|
||||||
prompt_string = (
|
|
||||||
f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n"
|
|
||||||
f"Commands:\n"
|
|
||||||
f"{self._generate_numbered_list(self.commands, item_type='command')}\n\n"
|
|
||||||
f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n"
|
|
||||||
f"Performance Evaluation:\n"
|
|
||||||
f"{self._generate_numbered_list(self.performance_evaluation)}\n\n"
|
|
||||||
f"You should only respond in JSON format as described below "
|
|
||||||
f"\nResponse Format: \n{formatted_response_format} "
|
|
||||||
f"\nEnsure the response can be parsed by Python json.loads"
|
|
||||||
)
|
|
||||||
|
|
||||||
return prompt_string
|
|
||||||
|
|
||||||
|
|
||||||
def get_prompt(tools: List[BaseTool]) -> str:
|
|
||||||
"""Generates a prompt string.
|
|
||||||
|
|
||||||
It includes various constraints, commands, resources, and performance evaluations.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: The generated prompt string.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Initialize the PromptGenerator object
|
|
||||||
prompt_generator = PromptGenerator()
|
|
||||||
|
|
||||||
# Add constraints to the PromptGenerator object
|
|
||||||
prompt_generator.add_constraint(
|
|
||||||
"~4000 word limit for short term memory. "
|
|
||||||
"Your short term memory is short, "
|
|
||||||
"so immediately save important information to files."
|
|
||||||
)
|
|
||||||
prompt_generator.add_constraint(
|
|
||||||
"If you are unsure how you previously did something "
|
|
||||||
"or want to recall past events, "
|
|
||||||
"thinking about similar events will help you remember."
|
|
||||||
)
|
|
||||||
prompt_generator.add_constraint("No user assistance")
|
|
||||||
prompt_generator.add_constraint(
|
|
||||||
'Exclusively use the commands listed in double quotes e.g. "command name"'
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add commands to the PromptGenerator object
|
|
||||||
for tool in tools:
|
|
||||||
prompt_generator.add_tool(tool)
|
|
||||||
|
|
||||||
# Add resources to the PromptGenerator object
|
|
||||||
prompt_generator.add_resource(
|
|
||||||
"Internet access for searches and information gathering."
|
|
||||||
)
|
|
||||||
prompt_generator.add_resource("Long Term memory management.")
|
|
||||||
prompt_generator.add_resource(
|
|
||||||
"GPT-3.5 powered Agents for delegation of simple tasks."
|
|
||||||
)
|
|
||||||
prompt_generator.add_resource("File output.")
|
|
||||||
|
|
||||||
# Add performance evaluations to the PromptGenerator object
|
|
||||||
prompt_generator.add_performance_evaluation(
|
|
||||||
"Continuously review and analyze your actions "
|
|
||||||
"to ensure you are performing to the best of your abilities."
|
|
||||||
)
|
|
||||||
prompt_generator.add_performance_evaluation(
|
|
||||||
"Constructively self-criticize your big-picture behavior constantly."
|
|
||||||
)
|
|
||||||
prompt_generator.add_performance_evaluation(
|
|
||||||
"Reflect on past decisions and strategies to refine your approach."
|
|
||||||
)
|
|
||||||
prompt_generator.add_performance_evaluation(
|
|
||||||
"Every command has a cost, so be smart and efficient. "
|
|
||||||
"Aim to complete tasks in the least number of steps."
|
|
||||||
)
|
|
||||||
|
|
||||||
# Generate the prompt string
|
|
||||||
prompt_string = prompt_generator.generate_prompt_string()
|
|
||||||
|
|
||||||
return prompt_string
|
|
Loading…
Reference in new issue