stacked worker agent

pull/64/head
Kye 1 year ago
parent 713a0ebaf8
commit 9733541cc7

@ -0,0 +1,89 @@
from swarms.models import OpenAIChat
from swarms.workers import Worker
from swarms.tools.autogpt import tool
from swarms.agents.hf_agents import HFAgent
from swarms.agents.omni_modal_agent import OmniModalAgent
#Initialize API Key
api_key = ""
# Initialize the language model,
# This model can be swapped out with Anthropic, ETC, Huggingface Models like Mistral, ETC
llm = OpenAIChat(
openai_api_key=api_key,
temperature=0.5,
)
#wrap a function with the tool decorator to make it a tool
@tool
def hf_agent(task: str = None):
"""
An tool that uses an openai model to call and respond to a task by search for a model on huggingface
It first downloads the model then uses it.
Rules: Don't call this model for simple tasks like generating a summary, only call this tool for multi modal tasks like generating images, videos, speech, etc
"""
agent = HFAgent(model="text-davinci-003", api_key=api_key)
response = agent.run(task, text="¡Este es un API muy agradable!")
return response
#wrap a function with the tool decorator to make it a tool
@tool
def omni_agent(task: str = None):
"""
An tool that uses an openai Model to utilize and call huggingface models and guide them to perform a task.
Rules: Don't call this model for simple tasks like generating a summary, only call this tool for multi modal tasks like generating images, videos, speech
The following tasks are what this tool should be used for:
Tasks omni agent is good for:
--------------
document-question-answering
image-captioning
image-question-answering
image-segmentation
speech-to-text
summarization
text-classification
text-question-answering
translation
huggingface-tools/text-to-image
huggingface-tools/text-to-video
text-to-speech
huggingface-tools/text-download
huggingface-tools/image-transformation
"""
agent = OmniModalAgent(llm)
response = agent.run(task)
return response
# Append tools to an list
tools = [
hf_agent,
omni_agent,
]
#Initialize a single Worker node with previously defined tools in addition to it's
# predefined tools
node = Worker(
llm=llm,
ai_name="Optimus Prime",
openai_api_key=api_key,
ai_role="Worker in a swarm",
external_tools=tools,
human_in_the_loop=False,
temperature=0.5,
)
#Specify task
task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
# Run the node on the task
response = node.run(task)
# Print the response
print(response)

@ -5,6 +5,8 @@
# from swarms.agents.aot import AoTAgent
# from swarms.agents.multi_modal_visual_agent import MultiModalAgent
from swarms.agents.omni_modal_agent import OmniModalAgent
from swarms.agents.hf_agents import HFAgent
# utils

@ -370,7 +370,7 @@ class Agent:
return [self.generate_one(prompt, stop) for prompt in prompts]
class OpenAIModel(Agent):
class HFAgent(Agent):
"""
Agent that uses the openai API to generate code.
@ -401,7 +401,7 @@ class OpenAIModel(Agent):
Example:
```py
from swarms.models import OpenAI
from swarms.agents.hf_agents import HFAgent
agent = OpenAiAgent(model="text-davinci-003", api_key=xxx)
agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!")

@ -1,186 +0,0 @@
import json
from typing import List
from langchain.tools.base import BaseTool
FINISH_NAME = "finish"
class PromptGenerator:
"""A class for generating custom prompt strings.
Does this based on constraints, commands, resources, and performance evaluations.
"""
def __init__(self) -> None:
"""Initialize the PromptGenerator object.
Starts with empty lists of constraints, commands, resources,
and performance evaluations.
"""
self.constraints: List[str] = []
self.commands: List[BaseTool] = []
self.resources: List[str] = []
self.performance_evaluation: List[str] = []
self.response_format = {
"thoughts": {
"text": "thought",
"reasoning": "reasoning",
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
"criticism": "constructive self-criticism",
"speak": "thoughts summary to say to user",
},
"command": {"name": "command name", "args": {"arg name": "value"}},
}
def add_constraint(self, constraint: str) -> None:
"""
Add a constraint to the constraints list.
Args:
constraint (str): The constraint to be added.
"""
self.constraints.append(constraint)
def add_tool(self, tool: BaseTool) -> None:
self.commands.append(tool)
def _generate_command_string(self, tool: BaseTool) -> str:
output = f"{tool.name}: {tool.description}"
output += f", args json schema: {json.dumps(tool.args)}"
return output
def add_resource(self, resource: str) -> None:
"""
Add a resource to the resources list.
Args:
resource (str): The resource to be added.
"""
self.resources.append(resource)
def add_performance_evaluation(self, evaluation: str) -> None:
"""
Add a performance evaluation item to the performance_evaluation list.
Args:
evaluation (str): The evaluation item to be added.
"""
self.performance_evaluation.append(evaluation)
def _generate_numbered_list(self, items: list, item_type: str = "list") -> str:
"""
Generate a numbered list from given items based on the item_type.
Args:
items (list): A list of items to be numbered.
item_type (str, optional): The type of items in the list.
Defaults to 'list'.
Returns:
str: The formatted numbered list.
"""
if item_type == "command":
command_strings = [
f"{i + 1}. {self._generate_command_string(item)}"
for i, item in enumerate(items)
]
finish_description = (
"use this to signal that you have finished all your objectives"
)
finish_args = (
'"response": "final response to let '
'people know you have finished your objectives"'
)
finish_string = (
f"{len(items) + 1}. {FINISH_NAME}: "
f"{finish_description}, args: {finish_args}"
)
return "\n".join(command_strings + [finish_string])
else:
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
def generate_prompt_string(self) -> str:
"""Generate a prompt string.
Returns:
str: The generated prompt string.
"""
formatted_response_format = json.dumps(self.response_format, indent=4)
prompt_string = (
f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n"
f"Commands:\n"
f"{self._generate_numbered_list(self.commands, item_type='command')}\n\n"
f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n"
f"Performance Evaluation:\n"
f"{self._generate_numbered_list(self.performance_evaluation)}\n\n"
f"You should only respond in JSON format as described below "
f"\nResponse Format: \n{formatted_response_format} "
f"\nEnsure the response can be parsed by Python json.loads"
)
return prompt_string
def get_prompt(tools: List[BaseTool]) -> str:
"""Generates a prompt string.
It includes various constraints, commands, resources, and performance evaluations.
Returns:
str: The generated prompt string.
"""
# Initialize the PromptGenerator object
prompt_generator = PromptGenerator()
# Add constraints to the PromptGenerator object
prompt_generator.add_constraint(
"~4000 word limit for short term memory. "
"Your short term memory is short, "
"so immediately save important information to files."
)
prompt_generator.add_constraint(
"If you are unsure how you previously did something "
"or want to recall past events, "
"thinking about similar events will help you remember."
)
prompt_generator.add_constraint("No user assistance")
prompt_generator.add_constraint(
'Exclusively use the commands listed in double quotes e.g. "command name"'
)
# Add commands to the PromptGenerator object
for tool in tools:
prompt_generator.add_tool(tool)
# Add resources to the PromptGenerator object
prompt_generator.add_resource(
"Internet access for searches and information gathering."
)
prompt_generator.add_resource("Long Term memory management.")
prompt_generator.add_resource(
"GPT-3.5 powered Agents for delegation of simple tasks."
)
prompt_generator.add_resource("File output.")
# Add performance evaluations to the PromptGenerator object
prompt_generator.add_performance_evaluation(
"Continuously review and analyze your actions "
"to ensure you are performing to the best of your abilities."
)
prompt_generator.add_performance_evaluation(
"Constructively self-criticize your big-picture behavior constantly."
)
prompt_generator.add_performance_evaluation(
"Reflect on past decisions and strategies to refine your approach."
)
prompt_generator.add_performance_evaluation(
"Every command has a cost, so be smart and efficient. "
"Aim to complete tasks in the least number of steps."
)
# Generate the prompt string
prompt_string = prompt_generator.generate_prompt_string()
return prompt_string
Loading…
Cancel
Save