pull/692/merge
Kye Gomez 3 weeks ago
parent 1cc69ba925
commit ca60a0c117

@ -0,0 +1,177 @@
import asyncio
from typing import List
from swarm_models import OpenAIChat
from swarms.structs.async_workflow import (
SpeakerConfig,
SpeakerRole,
create_default_workflow,
run_workflow_with_retry,
)
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
from swarms.structs.agent import Agent
async def create_specialized_agents() -> List[Agent]:
"""Create a set of specialized agents for financial analysis"""
# Base model configuration
model = OpenAIChat(model_name="gpt-4o")
# Financial Analysis Agent
financial_agent = Agent(
agent_name="Financial-Analysis-Agent",
agent_description="Personal finance advisor agent",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT +
"Output the <DONE> token when you're done creating a portfolio of etfs, index, funds, and more for AI",
max_loops=1,
llm=model,
dynamic_temperature_enabled=True,
user_name="Kye",
retry_attempts=3,
context_length=8192,
return_step_meta=False,
output_type="str",
auto_generate_prompt=False,
max_tokens=4000,
stopping_token="<DONE>",
saved_state_path="financial_agent.json",
interactive=False,
)
# Risk Assessment Agent
risk_agent = Agent(
agent_name="Risk-Assessment-Agent",
agent_description="Investment risk analysis specialist",
system_prompt="Analyze investment risks and provide risk scores. Output <DONE> when analysis is complete.",
max_loops=1,
llm=model,
dynamic_temperature_enabled=True,
user_name="Kye",
retry_attempts=3,
context_length=8192,
output_type="str",
max_tokens=4000,
stopping_token="<DONE>",
saved_state_path="risk_agent.json",
interactive=False,
)
# Market Research Agent
research_agent = Agent(
agent_name="Market-Research-Agent",
agent_description="AI and tech market research specialist",
system_prompt="Research AI market trends and growth opportunities. Output <DONE> when research is complete.",
max_loops=1,
llm=model,
dynamic_temperature_enabled=True,
user_name="Kye",
retry_attempts=3,
context_length=8192,
output_type="str",
max_tokens=4000,
stopping_token="<DONE>",
saved_state_path="research_agent.json",
interactive=False,
)
return [financial_agent, risk_agent, research_agent]
async def main():
# Create specialized agents
agents = await create_specialized_agents()
# Create workflow with group chat enabled
workflow = create_default_workflow(
agents=agents,
name="AI-Investment-Analysis-Workflow",
enable_group_chat=True
)
# Configure speaker roles
workflow.speaker_system.add_speaker(
SpeakerConfig(
role=SpeakerRole.COORDINATOR,
agent=agents[0], # Financial agent as coordinator
priority=1,
concurrent=False,
required=True
)
)
workflow.speaker_system.add_speaker(
SpeakerConfig(
role=SpeakerRole.CRITIC,
agent=agents[1], # Risk agent as critic
priority=2,
concurrent=True
)
)
workflow.speaker_system.add_speaker(
SpeakerConfig(
role=SpeakerRole.EXECUTOR,
agent=agents[2], # Research agent as executor
priority=2,
concurrent=True
)
)
# Investment analysis task
investment_task = """
Create a comprehensive investment analysis for a $40k portfolio focused on AI growth opportunities:
1. Identify high-growth AI ETFs and index funds
2. Analyze risks and potential returns
3. Create a diversified portfolio allocation
4. Provide market trend analysis
Present the results in a structured markdown format.
"""
try:
# Run workflow with retry
result = await run_workflow_with_retry(
workflow=workflow,
task=investment_task,
max_retries=3
)
print("\nWorkflow Results:")
print("================")
# Process and display agent outputs
for output in result.agent_outputs:
print(f"\nAgent: {output.agent_name}")
print("-" * (len(output.agent_name) + 8))
print(output.output)
# Display group chat history if enabled
if workflow.enable_group_chat:
print("\nGroup Chat Discussion:")
print("=====================")
for msg in workflow.speaker_system.message_history:
print(f"\n{msg.role} ({msg.agent_name}):")
print(msg.content)
# Save detailed results
if result.metadata.get("shared_memory_keys"):
print("\nShared Insights:")
print("===============")
for key in result.metadata["shared_memory_keys"]:
value = workflow.shared_memory.get(key)
if value:
print(f"\n{key}:")
print(value)
except Exception as e:
print(f"Workflow failed: {str(e)}")
finally:
await workflow.cleanup()
if __name__ == "__main__":
# Run the example
asyncio.run(main())

@ -1,15 +1,19 @@
# Swarms Bounty Program
## Overview
The Swarms Bounty Program is an initiative designed to incentivize contributors to help us improve and expand the Swarms framework. With an impressive $150,000 allocated for bounties, contributors have the unique opportunity to earn generous rewards while gaining prestigious recognition in the Swarms community of over 9,000 agent engineers. This program offers more than just financial benefits; it allows contributors to play a pivotal role in advancing the field of multi-agent collaboration and AI automation, while also growing their professional skills and network. By joining the Swarms Bounty Program, you become part of an innovative movement shaping the future of technology.
## Why Contribute?
1. **Generous Rewards**: The bounty pool totals $150,000, ensuring that contributors are fairly compensated for their valuable work on successfully completed tasks. Each task comes with its own reward, reflecting its complexity and impact.
2. **Community Status**: Gain coveted recognition as a valued and active contributor within the thriving Swarms community. This status not only highlights your contributions but also builds your reputation among a network of AI engineers.
3. **Skill Development**: Collaborate on cutting-edge AI projects, hone your expertise in agent engineering, and learn practical skills that can be applied to real-world challenges in the AI domain.
4. **Networking Opportunities**: Work side-by-side with over 9,000 agent engineers in our active and supportive community. This network fosters collaboration, knowledge sharing, and mentorship opportunities that can significantly boost your career.
## How It Works
1. **Explore Issues and Tasks**:
- Visit the [Swarms GitHub Issues](https://github.com/kyegomez/swarms/issues) to find a comprehensive list of open tasks requiring attention. These issues range from coding challenges to documentation improvements, offering opportunities for contributors with various skill sets.
- Check the [Swarms Project Board](https://github.com/users/kyegomez/projects/1) for prioritized tasks and ongoing milestones. This board provides a clear view of project priorities and helps contributors align their efforts with the project's immediate goals.
@ -31,10 +35,13 @@ The Swarms Bounty Program is an initiative designed to incentivize contributors
## Contribution Guidelines
To ensure high-quality contributions and streamline the process, please adhere to the following guidelines:
- Familiarize yourself with the [Swarms Contribution Guidelines](https://github.com/kyegomez/swarms/blob/main/CONTRIBUTING.md). These guidelines outline coding standards, best practices, and procedures for contributing effectively.
- Ensure your code is clean, modular, and well-documented. Contributions that adhere to the project's standards are more likely to be accepted.
- Actively communicate with the Swarms team and other contributors. Clear communication helps resolve uncertainties, avoids duplication, and fosters collaboration within the community.
## Get Involved
1. **Join the Community**:
- Become an active member of the Swarms community by joining our Discord server: [Join Now](https://discord.gg/jM3Z6M9uMq). The Discord server serves as a hub for discussions, updates, and support.
@ -45,14 +52,19 @@ To ensure high-quality contributions and streamline the process, please adhere t
- Dive into the Swarms GitHub repository: [Swarms GitHub](https://github.com/kyegomez/swarms). Explore the codebase, familiarize yourself with the project structure, and identify areas where you can make an impact.
## Additional Benefits
Beyond monetary rewards, contributors gain intangible benefits that elevate their professional journey:
- **Recognition**: Your contributions will be showcased to a community of over 9,000 engineers, increasing your visibility and credibility in the AI field.
- **Portfolio Building**: Add high-impact contributions to your portfolio, demonstrating your skills and experience to potential employers or collaborators.
- **Knowledge Sharing**: Learn from and collaborate with experts in agent engineering, gaining insights into the latest advancements and best practices in the field.
## Contact Us
For any questions, support, or clarifications, reach out to the Swarms team:
- **Discord**: Engage directly with the team and fellow contributors in our active channels.
- **GitHub**: Open an issue for specific questions or suggestions related to the project. Were here to guide and assist you at every step of your contribution journey.
---

@ -94,8 +94,7 @@ print(results)
### Example: Stock Analysis and Investment Strategy
```python
import asyncio
from swarms import Agent
from async_workflow import AsyncWorkflow
from swarms import Agent, AsyncWorkflow
from swarms.prompts.finance_agent_sys_prompt import FINANCIAL_AGENT_SYS_PROMPT
# Initialize multiple Financial Agents

@ -1,26 +1,187 @@
import asyncio
from typing import Any, List
from swarms.structs.base_workflow import BaseWorkflow
import json
import logging
import os
import threading
import uuid
from contextlib import asynccontextmanager
from dataclasses import asdict, dataclass
from datetime import datetime
from enum import Enum
from logging.handlers import RotatingFileHandler
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Field
from swarm_models import OpenAIChat
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
from swarms.structs.agent import Agent
from swarms.structs.base_workflow import BaseWorkflow
from swarms.utils.loguru_logger import initialize_logger
# Base logger initialization
logger = initialize_logger("async_workflow")
# Pydantic models for structured data
class AgentOutput(BaseModel):
agent_id: str
agent_name: str
task_id: str
input: str
output: Any
start_time: datetime
end_time: datetime
status: str
error: Optional[str] = None
class WorkflowOutput(BaseModel):
workflow_id: str
workflow_name: str
start_time: datetime
end_time: datetime
total_agents: int
successful_tasks: int
failed_tasks: int
agent_outputs: List[AgentOutput]
metadata: Dict[str, Any] = Field(default_factory=dict)
class SpeakerRole(str, Enum):
COORDINATOR = "coordinator"
CRITIC = "critic"
EXECUTOR = "executor"
VALIDATOR = "validator"
DEFAULT = "default"
class SpeakerMessage(BaseModel):
role: SpeakerRole
content: Any
timestamp: datetime
agent_name: str
metadata: Dict[str, Any] = Field(default_factory=dict)
class GroupChatConfig(BaseModel):
max_turns: int = 10
timeout_per_turn: float = 30.0
require_all_speakers: bool = False
allow_concurrent: bool = True
save_history: bool = True
@dataclass
class SharedMemoryItem:
key: str
value: Any
timestamp: datetime
author: str
metadata: Dict[str, Any] = None
@dataclass
class SpeakerConfig:
role: SpeakerRole
agent: Any
priority: int = 0
concurrent: bool = True
timeout: float = 30.0
required: bool = False
class SharedMemory:
"""Thread-safe shared memory implementation with persistence"""
def __init__(self, persistence_path: Optional[str] = None):
self._memory = {}
self._lock = threading.Lock()
self._persistence_path = persistence_path
self._load_from_disk()
def set(self, key: str, value: Any, author: str, metadata: Dict[str, Any] = None) -> None:
with self._lock:
item = SharedMemoryItem(
key=key,
value=value,
timestamp=datetime.utcnow(),
author=author,
metadata=metadata or {}
)
self._memory[key] = item
self._persist_to_disk()
def get(self, key: str) -> Optional[Any]:
with self._lock:
item = self._memory.get(key)
return item.value if item else None
def get_with_metadata(self, key: str) -> Optional[SharedMemoryItem]:
with self._lock:
return self._memory.get(key)
def _persist_to_disk(self) -> None:
if self._persistence_path:
with open(self._persistence_path, 'w') as f:
json.dump({k: asdict(v) for k, v in self._memory.items()}, f)
def _load_from_disk(self) -> None:
if self._persistence_path and os.path.exists(self._persistence_path):
with open(self._persistence_path, 'r') as f:
data = json.load(f)
self._memory = {
k: SharedMemoryItem(**v) for k, v in data.items()
}
class SpeakerSystem:
"""Manages speaker interactions and group chat functionality"""
def __init__(self, default_timeout: float = 30.0):
self.speakers: Dict[SpeakerRole, SpeakerConfig] = {}
self.message_history: List[SpeakerMessage] = []
self.default_timeout = default_timeout
self._lock = threading.Lock()
def add_speaker(self, config: SpeakerConfig) -> None:
with self._lock:
self.speakers[config.role] = config
def remove_speaker(self, role: SpeakerRole) -> None:
with self._lock:
self.speakers.pop(role, None)
async def _execute_speaker(
self,
config: SpeakerConfig,
input_data: Any,
context: Dict[str, Any] = None
) -> SpeakerMessage:
try:
result = await asyncio.wait_for(
config.agent.arun(input_data),
timeout=config.timeout
)
return SpeakerMessage(
role=config.role,
content=result,
timestamp=datetime.utcnow(),
agent_name=config.agent.agent_name,
metadata={"context": context or {}}
)
except asyncio.TimeoutError:
return SpeakerMessage(
role=config.role,
content=None,
timestamp=datetime.utcnow(),
agent_name=config.agent.agent_name,
metadata={"error": "Timeout"}
)
except Exception as e:
return SpeakerMessage(
role=config.role,
content=None,
timestamp=datetime.utcnow(),
agent_name=config.agent.agent_name,
metadata={"error": str(e)}
)
class AsyncWorkflow(BaseWorkflow):
"""
Represents an asynchronous workflow that can execute tasks concurrently using multiple agents.
Attributes:
- name (str): The name of the workflow.
- agents (List[Agent]): A list of agents participating in the workflow.
- max_workers (int): The maximum number of workers to use for concurrent execution.
- dashboard (bool): Indicates if a dashboard should be displayed.
- autosave (bool): Indicates if the results should be autosaved.
- verbose (bool): Indicates if verbose logging is enabled.
- task_pool (List): A pool of tasks to be executed.
- results (List): The results of the executed tasks.
- loop (asyncio.AbstractEventLoop): The event loop used for asynchronous execution.
"""
"""Enhanced asynchronous workflow with advanced speaker system"""
def __init__(
self,
name: str = "AsyncWorkflow",
@ -29,9 +190,14 @@ class AsyncWorkflow(BaseWorkflow):
dashboard: bool = False,
autosave: bool = False,
verbose: bool = False,
log_path: str = "workflow.log",
shared_memory_path: Optional[str] = "shared_memory.json",
enable_group_chat: bool = False,
group_chat_config: Optional[GroupChatConfig] = None,
**kwargs,
):
super().__init__(agents=agents, **kwargs)
self.workflow_id = str(uuid.uuid4())
self.name = name
self.agents = agents or []
self.max_workers = max_workers
@ -40,52 +206,219 @@ class AsyncWorkflow(BaseWorkflow):
self.verbose = verbose
self.task_pool = []
self.results = []
self.loop = None
self.shared_memory = SharedMemory(shared_memory_path)
self.speaker_system = SpeakerSystem()
self.enable_group_chat = enable_group_chat
self.group_chat_config = group_chat_config or GroupChatConfig()
self._setup_logging(log_path)
self.metadata = {}
def _setup_logging(self, log_path: str) -> None:
"""Configure rotating file logger"""
self.logger = logging.getLogger(f"workflow_{self.workflow_id}")
self.logger.setLevel(logging.DEBUG if self.verbose else logging.INFO)
handler = RotatingFileHandler(
log_path, maxBytes=10*1024*1024, backupCount=5
)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
handler.setFormatter(formatter)
self.logger.addHandler(handler)
def add_default_speakers(self) -> None:
"""Add all agents as default concurrent speakers"""
for agent in self.agents:
config = SpeakerConfig(
role=SpeakerRole.DEFAULT,
agent=agent,
concurrent=True,
timeout=30.0,
required=False
)
self.speaker_system.add_speaker(config)
async def run_concurrent_speakers(
self,
task: str,
context: Dict[str, Any] = None
) -> List[SpeakerMessage]:
"""Run all concurrent speakers in parallel"""
concurrent_tasks = [
self.speaker_system._execute_speaker(config, task, context)
for config in self.speaker_system.speakers.values()
if config.concurrent
]
results = await asyncio.gather(*concurrent_tasks, return_exceptions=True)
return [r for r in results if isinstance(r, SpeakerMessage)]
async def run_sequential_speakers(
self,
task: str,
context: Dict[str, Any] = None
) -> List[SpeakerMessage]:
"""Run non-concurrent speakers in sequence"""
results = []
for config in sorted(
self.speaker_system.speakers.values(),
key=lambda x: x.priority
):
if not config.concurrent:
result = await self.speaker_system._execute_speaker(
config, task, context
)
results.append(result)
return results
async def run_group_chat(
self,
initial_message: str,
context: Dict[str, Any] = None
) -> List[SpeakerMessage]:
"""Run a group chat discussion among speakers"""
if not self.enable_group_chat:
raise ValueError("Group chat is not enabled for this workflow")
messages: List[SpeakerMessage] = []
current_turn = 0
while current_turn < self.group_chat_config.max_turns:
turn_context = {
"turn": current_turn,
"history": messages,
**(context or {})
}
if self.group_chat_config.allow_concurrent:
turn_messages = await self.run_concurrent_speakers(
initial_message if current_turn == 0 else messages[-1].content,
turn_context
)
else:
turn_messages = await self.run_sequential_speakers(
initial_message if current_turn == 0 else messages[-1].content,
turn_context
)
messages.extend(turn_messages)
# Check if we should continue the conversation
if self._should_end_group_chat(messages):
break
current_turn += 1
if self.group_chat_config.save_history:
self.speaker_system.message_history.extend(messages)
return messages
def _should_end_group_chat(self, messages: List[SpeakerMessage]) -> bool:
"""Determine if group chat should end based on messages"""
if not messages:
return True
# Check if all required speakers have participated
if self.group_chat_config.require_all_speakers:
participating_roles = {msg.role for msg in messages}
required_roles = {
role for role, config in self.speaker_system.speakers.items()
if config.required
}
if not required_roles.issubset(participating_roles):
return False
return False
@asynccontextmanager
async def task_context(self):
"""Context manager for task execution with proper cleanup"""
start_time = datetime.utcnow()
try:
yield
finally:
end_time = datetime.utcnow()
if self.autosave:
await self._save_results(start_time, end_time)
async def _execute_agent_task(
self, agent: Agent, task: str
) -> Any:
"""
Executes a single agent task asynchronously.
Args:
- agent (Agent): The agent executing the task.
- task (str): The task to be executed.
Returns:
- Any: The result of the task execution or an error message if an exception occurs.
"""
self,
agent: Agent,
task: str
) -> AgentOutput:
"""Execute a single agent task with enhanced error handling and monitoring"""
start_time = datetime.utcnow()
task_id = str(uuid.uuid4())
try:
if self.verbose:
logger.info(
f"Agent {agent.agent_name} processing task: {task}"
self.logger.info(
f"Agent {agent.agent_name} starting task {task_id}: {task}"
)
result = await agent.arun(task)
if self.verbose:
logger.info(
f"Agent {agent.agent_name} completed task"
end_time = datetime.utcnow()
self.logger.info(
f"Agent {agent.agent_name} completed task {task_id}"
)
return result
except Exception as e:
logger.error(
f"Error in agent {agent.agent_name}: {str(e)}"
return AgentOutput(
agent_id=str(id(agent)),
agent_name=agent.agent_name,
task_id=task_id,
input=task,
output=result,
start_time=start_time,
end_time=end_time,
status="success"
)
return str(e)
async def run(self, task: str) -> List[Any]:
"""
Runs the workflow with all agents processing the task concurrently.
except Exception as e:
end_time = datetime.utcnow()
self.logger.error(
f"Error in agent {agent.agent_name} task {task_id}: {str(e)}",
exc_info=True
)
Args:
- task (str): The task to be executed by all agents.
return AgentOutput(
agent_id=str(id(agent)),
agent_name=agent.agent_name,
task_id=task_id,
input=task,
output=None,
start_time=start_time,
end_time=end_time,
status="error",
error=str(e)
)
Returns:
- List[Any]: A list of results from all agents or error messages if exceptions occur.
"""
async def run(self, task: str) -> WorkflowOutput:
"""Enhanced workflow execution with speaker system integration"""
if not self.agents:
raise ValueError("No agents provided to the workflow")
async with self.task_context():
start_time = datetime.utcnow()
try:
# Run speakers first if enabled
speaker_outputs = []
if self.enable_group_chat:
speaker_outputs = await self.run_group_chat(task)
else:
concurrent_outputs = await self.run_concurrent_speakers(task)
sequential_outputs = await self.run_sequential_speakers(task)
speaker_outputs = concurrent_outputs + sequential_outputs
# Store speaker outputs in shared memory
self.shared_memory.set(
"speaker_outputs",
[msg.dict() for msg in speaker_outputs],
"workflow"
)
# Create tasks for all agents
tasks = [
self._execute_agent_task(agent, task)
@ -93,16 +426,303 @@ class AsyncWorkflow(BaseWorkflow):
]
# Execute all tasks concurrently
self.results = await asyncio.gather(
*tasks, return_exceptions=True
agent_outputs = await asyncio.gather(*tasks, return_exceptions=True)
end_time = datetime.utcnow()
# Calculate success/failure counts
successful_tasks = sum(1 for output in agent_outputs
if isinstance(output, AgentOutput) and output.status == "success")
failed_tasks = len(agent_outputs) - successful_tasks
return WorkflowOutput(
workflow_id=self.workflow_id,
workflow_name=self.name,
start_time=start_time,
end_time=end_time,
total_agents=len(self.agents),
successful_tasks=successful_tasks,
failed_tasks=failed_tasks,
agent_outputs=[output for output in agent_outputs
if isinstance(output, AgentOutput)],
metadata={
"max_workers": self.max_workers,
"shared_memory_keys": list(self.shared_memory._memory.keys()),
"group_chat_enabled": self.enable_group_chat,
"total_speaker_messages": len(speaker_outputs),
"speaker_outputs": [msg.dict() for msg in speaker_outputs]
}
)
except Exception as e:
self.logger.error(f"Critical workflow error: {str(e)}", exc_info=True)
raise
async def _save_results(self, start_time: datetime, end_time: datetime) -> None:
"""Save workflow results to disk"""
if not self.autosave:
return
output_dir = "workflow_outputs"
os.makedirs(output_dir, exist_ok=True)
filename = f"{output_dir}/workflow_{self.workflow_id}_{end_time.strftime('%Y%m%d_%H%M%S')}.json"
try:
with open(filename, 'w') as f:
json.dump({
"workflow_id": self.workflow_id,
"start_time": start_time.isoformat(),
"end_time": end_time.isoformat(),
"results": [
asdict(result) if hasattr(result, '__dict__')
else result.dict() if hasattr(result, 'dict')
else str(result)
for result in self.results
],
"speaker_history": [
msg.dict() for msg in self.speaker_system.message_history
],
"metadata": self.metadata
}, f, default=str, indent=2)
self.logger.info(f"Workflow results saved to {filename}")
except Exception as e:
self.logger.error(f"Error saving workflow results: {str(e)}")
def _validate_config(self) -> None:
"""Validate workflow configuration"""
if self.max_workers < 1:
raise ValueError("max_workers must be at least 1")
if self.enable_group_chat and not self.speaker_system.speakers:
raise ValueError("Group chat enabled but no speakers configured")
for config in self.speaker_system.speakers.values():
if config.timeout <= 0:
raise ValueError(f"Invalid timeout for speaker {config.role}")
async def cleanup(self) -> None:
"""Cleanup workflow resources"""
try:
# Close any open file handlers
for handler in self.logger.handlers[:]:
handler.close()
self.logger.removeHandler(handler)
# Persist final state
if self.autosave:
# TODO: Implement autosave logic here
pass
end_time = datetime.utcnow()
await self._save_results(self.results[0].start_time if self.results else end_time, end_time)
# Clear shared memory if configured
self.shared_memory._memory.clear()
except Exception as e:
self.logger.error(f"Error during cleanup: {str(e)}")
raise
# Utility functions for the workflow
def create_default_workflow(
agents: List[Agent],
name: str = "DefaultWorkflow",
enable_group_chat: bool = False
) -> AsyncWorkflow:
"""Create a workflow with default configuration"""
workflow = AsyncWorkflow(
name=name,
agents=agents,
max_workers=len(agents),
dashboard=True,
autosave=True,
verbose=True,
enable_group_chat=enable_group_chat,
group_chat_config=GroupChatConfig(
max_turns=5,
allow_concurrent=True,
require_all_speakers=False
)
)
return self.results
workflow.add_default_speakers()
return workflow
async def run_workflow_with_retry(
workflow: AsyncWorkflow,
task: str,
max_retries: int = 3,
retry_delay: float = 1.0
) -> WorkflowOutput:
"""Run workflow with retry logic"""
for attempt in range(max_retries):
try:
return await workflow.run(task)
except Exception as e:
logger.error(f"Error in workflow execution: {str(e)}")
if attempt == max_retries - 1:
raise
workflow.logger.warning(
f"Attempt {attempt + 1} failed, retrying in {retry_delay} seconds: {str(e)}"
)
await asyncio.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
# async def create_specialized_agents() -> List[Agent]:
# """Create a set of specialized agents for financial analysis"""
# # Base model configuration
# model = OpenAIChat(model_name="gpt-4o")
# # Financial Analysis Agent
# financial_agent = Agent(
# agent_name="Financial-Analysis-Agent",
# agent_description="Personal finance advisor agent",
# system_prompt=FINANCIAL_AGENT_SYS_PROMPT +
# "Output the <DONE> token when you're done creating a portfolio of etfs, index, funds, and more for AI",
# max_loops=1,
# llm=model,
# dynamic_temperature_enabled=True,
# user_name="Kye",
# retry_attempts=3,
# context_length=8192,
# return_step_meta=False,
# output_type="str",
# auto_generate_prompt=False,
# max_tokens=4000,
# stopping_token="<DONE>",
# saved_state_path="financial_agent.json",
# interactive=False,
# )
# # Risk Assessment Agent
# risk_agent = Agent(
# agent_name="Risk-Assessment-Agent",
# agent_description="Investment risk analysis specialist",
# system_prompt="Analyze investment risks and provide risk scores. Output <DONE> when analysis is complete.",
# max_loops=1,
# llm=model,
# dynamic_temperature_enabled=True,
# user_name="Kye",
# retry_attempts=3,
# context_length=8192,
# output_type="str",
# max_tokens=4000,
# stopping_token="<DONE>",
# saved_state_path="risk_agent.json",
# interactive=False,
# )
# # Market Research Agent
# research_agent = Agent(
# agent_name="Market-Research-Agent",
# agent_description="AI and tech market research specialist",
# system_prompt="Research AI market trends and growth opportunities. Output <DONE> when research is complete.",
# max_loops=1,
# llm=model,
# dynamic_temperature_enabled=True,
# user_name="Kye",
# retry_attempts=3,
# context_length=8192,
# output_type="str",
# max_tokens=4000,
# stopping_token="<DONE>",
# saved_state_path="research_agent.json",
# interactive=False,
# )
# return [financial_agent, risk_agent, research_agent]
# async def main():
# # Create specialized agents
# agents = await create_specialized_agents()
# # Create workflow with group chat enabled
# workflow = create_default_workflow(
# agents=agents,
# name="AI-Investment-Analysis-Workflow",
# enable_group_chat=True
# )
# # Configure speaker roles
# workflow.speaker_system.add_speaker(
# SpeakerConfig(
# role=SpeakerRole.COORDINATOR,
# agent=agents[0], # Financial agent as coordinator
# priority=1,
# concurrent=False,
# required=True
# )
# )
# workflow.speaker_system.add_speaker(
# SpeakerConfig(
# role=SpeakerRole.CRITIC,
# agent=agents[1], # Risk agent as critic
# priority=2,
# concurrent=True
# )
# )
# workflow.speaker_system.add_speaker(
# SpeakerConfig(
# role=SpeakerRole.EXECUTOR,
# agent=agents[2], # Research agent as executor
# priority=2,
# concurrent=True
# )
# )
# # Investment analysis task
# investment_task = """
# Create a comprehensive investment analysis for a $40k portfolio focused on AI growth opportunities:
# 1. Identify high-growth AI ETFs and index funds
# 2. Analyze risks and potential returns
# 3. Create a diversified portfolio allocation
# 4. Provide market trend analysis
# Present the results in a structured markdown format.
# """
# try:
# # Run workflow with retry
# result = await run_workflow_with_retry(
# workflow=workflow,
# task=investment_task,
# max_retries=3
# )
# print("\nWorkflow Results:")
# print("================")
# # Process and display agent outputs
# for output in result.agent_outputs:
# print(f"\nAgent: {output.agent_name}")
# print("-" * (len(output.agent_name) + 8))
# print(output.output)
# # Display group chat history if enabled
# if workflow.enable_group_chat:
# print("\nGroup Chat Discussion:")
# print("=====================")
# for msg in workflow.speaker_system.message_history:
# print(f"\n{msg.role} ({msg.agent_name}):")
# print(msg.content)
# # Save detailed results
# if result.metadata.get("shared_memory_keys"):
# print("\nShared Insights:")
# print("===============")
# for key in result.metadata["shared_memory_keys"]:
# value = workflow.shared_memory.get(key)
# if value:
# print(f"\n{key}:")
# print(value)
# except Exception as e:
# print(f"Workflow failed: {str(e)}")
# finally:
# await workflow.cleanup()
# if __name__ == "__main__":
# # Run the example
# asyncio.run(main())
Loading…
Cancel
Save