Former-commit-id: 1c9d75d1c2
pull/47/head
Kye 2 years ago
parent 16877d602e
commit ccee64bb9c

@ -19,7 +19,17 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
class AgentNodeInitializer: class AgentNodeInitializer:
"""Useful for when you need to spawn an autonomous agent instance as a agent to accomplish complex tasks, it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on""" """Useful for when you need to spawn an autonomous agent instance as a agent to accomplish complex tasks, it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on"""
def __init__(self, llm, tools, vectorstore): def __init__(self,
llm,
tools,
vectorstore,
temperature,
model_type: str=None,
human_in_the_loop=True,
model_id: str = None,
embedding_size: int = 8192,
system_prompt: str = None,
max_iterations: int = None):
if not llm or not tools or not vectorstore: if not llm or not tools or not vectorstore:
logging.error("llm, tools, and vectorstore cannot be None.") logging.error("llm, tools, and vectorstore cannot be None.")
raise ValueError("llm, tools, and vectorstore cannot be None.") raise ValueError("llm, tools, and vectorstore cannot be None.")
@ -27,9 +37,23 @@ class AgentNodeInitializer:
self.llm = llm self.llm = llm
self.tools = tools self.tools = tools
self.vectorstore = vectorstore self.vectorstore = vectorstore
self.agent = None self.agent = None
self.temperature = temperature
self.model_type = model_type
self.human_in_the_loop = human_in_the_loop
self.prompt = prompt
self.model_id = model_id
self.embedding_size = embedding_size
self.system_prompt system_prompt
def create_agent(self, ai_name="Swarm Agent AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False):
def create_agent(self, ai_name="Swarm Agent AI Assistant", ai_role="Assistant", human_in_the_loop=True, search_kwargs={}, verbose=False):
logging.info("Creating agent in AgentNode") logging.info("Creating agent in AgentNode")
try: try:
self.agent = AutoGPT.from_llm_and_tools( self.agent = AutoGPT.from_llm_and_tools(
@ -78,16 +102,23 @@ class AgentNode:
self.openai_api_key = openai_api_key self.openai_api_key = openai_api_key
def initialize_llm(self, llm_class, temperature=0.5): def initialize_llm(self, llm_class):
if not llm_class: """
logging.error("llm_class cannot be none") Init LLM
raise ValueError("llm_class cannot be None")
Params:
llm_class(class): The Language model class. Default is OpenAI.
temperature (float): The Temperature for the language model. Default is 0.5
"""
try: try:
return llm_class(openai_api_key=self.openai_api_key, temperature=temperature) # Initialize language model
if self.llm_class == 'openai' or OpenAI:
return llm_class(openai_api_key=self.openai_api_key, temperature=self.temperature)
elif self.model_type == "huggingface":
return HuggingFaceLLM(model_id=self.model_id, temperature=self.temperature)
except Exception as e: except Exception as e:
logging.error(f"Failed to initialize language model: {e}") logging.error(f"Failed to initialize language model: {e}")
raise
def initialize_tools(self, llm_class): def initialize_tools(self, llm_class):
if not llm_class: if not llm_class:
@ -116,8 +147,7 @@ class AgentNode:
def initialize_vectorstore(self): def initialize_vectorstore(self):
try: try:
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key) embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
embedding_size = 1536 index = faiss.IndexFlatL2(self.embedding_size)
index = faiss.IndexFlatL2(embedding_size)
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
except Exception as e: except Exception as e:
logging.error(f"Failed to initialize vector store: {e}") logging.error(f"Failed to initialize vector store: {e}")
@ -137,7 +167,11 @@ class AgentNode:
logging.error(f"Failed to create agent node: {e}") logging.error(f"Failed to create agent node: {e}")
raise raise
def agent(openai_api_key): def agent(openai_api_key, ojective, model_type, model_id):
if not objective or not isinstance(objective, str):
logging.error("Invalid objective")
raise ValueError("A valid objective is required")
if not openai_api_key: if not openai_api_key:
logging.error("OpenAI API key is not provided") logging.error("OpenAI API key is not provided")
raise ValueError("OpenAI API key is required") raise ValueError("OpenAI API key is required")

Loading…
Cancel
Save