parent
38b138c56e
commit
d73f1a68c4
@ -1 +0,0 @@
|
|||||||
# 5.8.7
|
|
@ -0,0 +1,90 @@
|
|||||||
|
# 🚀 Swarms 5.9.2 Release Notes
|
||||||
|
|
||||||
|
|
||||||
|
### 🎯 Major Features
|
||||||
|
|
||||||
|
#### Concurrent Agent Execution Suite
|
||||||
|
We're excited to introduce a comprehensive suite of agent execution methods to supercharge your multi-agent workflows:
|
||||||
|
|
||||||
|
- `run_agents_concurrently`: Execute multiple agents in parallel with optimal resource utilization
|
||||||
|
- `run_agents_concurrently_async`: Asynchronous execution for improved performance
|
||||||
|
- `run_single_agent`: Streamlined single agent execution
|
||||||
|
- `run_agents_concurrently_multiprocess`: Multi-process execution for CPU-intensive tasks
|
||||||
|
- `run_agents_sequentially`: Sequential execution with controlled flow
|
||||||
|
- `run_agents_with_different_tasks`: Assign different tasks to different agents
|
||||||
|
- `run_agent_with_timeout`: Time-bounded agent execution
|
||||||
|
- `run_agents_with_resource_monitoring`: Monitor and manage resource usage
|
||||||
|
|
||||||
|
### 📚 Documentation
|
||||||
|
- Comprehensive documentation added for all new execution methods
|
||||||
|
- Updated examples and usage patterns
|
||||||
|
- Enhanced API reference
|
||||||
|
|
||||||
|
### 🛠️ Improvements
|
||||||
|
- Tree swarm implementation fixes
|
||||||
|
- Workspace directory now automatically set to `agent_workspace`
|
||||||
|
- Improved error handling and stability
|
||||||
|
|
||||||
|
## Quick Start
|
||||||
|
|
||||||
|
```python
|
||||||
|
from swarms import Agent, run_agents_concurrently, run_agents_with_timeout, run_agents_with_different_tasks
|
||||||
|
|
||||||
|
# Initialize multiple agents
|
||||||
|
agents = [
|
||||||
|
Agent(
|
||||||
|
agent_name=f"Analysis-Agent-{i}",
|
||||||
|
system_prompt="You are a financial analysis expert",
|
||||||
|
llm=model,
|
||||||
|
max_loops=1
|
||||||
|
)
|
||||||
|
for i in range(5)
|
||||||
|
]
|
||||||
|
|
||||||
|
# Run agents concurrently
|
||||||
|
task = "Analyze the impact of rising interest rates on tech stocks"
|
||||||
|
outputs = run_agents_concurrently(agents, task)
|
||||||
|
|
||||||
|
# Example with timeout
|
||||||
|
outputs_with_timeout = run_agents_with_timeout(
|
||||||
|
agents=agents,
|
||||||
|
task=task,
|
||||||
|
timeout=30.0,
|
||||||
|
batch_size=2
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run different tasks
|
||||||
|
task_pairs = [
|
||||||
|
(agents[0], "Analyze tech stocks"),
|
||||||
|
(agents[1], "Analyze energy stocks"),
|
||||||
|
(agents[2], "Analyze retail stocks")
|
||||||
|
]
|
||||||
|
different_outputs = run_agents_with_different_tasks(task_pairs)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
```bash
|
||||||
|
pip3 install -U swarms
|
||||||
|
```
|
||||||
|
|
||||||
|
## Coming Soon
|
||||||
|
- 🌟 Auto Swarm Builder: Automatically construct and configure entire swarms from a single task specification (in development)
|
||||||
|
- Auto Prompt Generator for thousands of agents (in development)
|
||||||
|
|
||||||
|
## Community
|
||||||
|
We believe in the power of community-driven development. Help us make Swarms better!
|
||||||
|
|
||||||
|
- ⭐ Star our repository: https://github.com/kyegomez/swarms
|
||||||
|
- 🔄 Fork the project and contribute your improvements
|
||||||
|
- 🤝 Join our growing community of contributors
|
||||||
|
|
||||||
|
## Bug Fixes
|
||||||
|
- Fixed Tree Swarm implementation issues
|
||||||
|
- Resolved workspace directory configuration problems
|
||||||
|
- General stability improvements
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
For detailed documentation and examples, visit our [GitHub repository](https://github.com/kyegomez/swarms).
|
||||||
|
|
||||||
|
Let's build the future of multi-agent systems together! 🚀
|
@ -1,30 +0,0 @@
|
|||||||
from swarms import Prompt
|
|
||||||
from swarm_models import OpenAIChat
|
|
||||||
import os
|
|
||||||
|
|
||||||
model = OpenAIChat(
|
|
||||||
api_key=os.getenv("OPENAI_API_KEY"),
|
|
||||||
model_name="gpt-4o-mini",
|
|
||||||
temperature=0.1,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Aggregator system prompt
|
|
||||||
prompt_generator_sys_prompt = Prompt(
|
|
||||||
name="prompt-generator-sys-prompt-o1",
|
|
||||||
description="Generate the most reliable prompt for a specific problem",
|
|
||||||
content="""
|
|
||||||
Your purpose is to craft extremely reliable and production-grade system prompts for other agents.
|
|
||||||
|
|
||||||
# Instructions
|
|
||||||
- Understand the prompt required for the agent.
|
|
||||||
- Utilize a combination of the most effective prompting strategies available, including chain of thought, many shot, few shot, and instructions-examples-constraints.
|
|
||||||
- Craft the prompt by blending the most suitable prompting strategies.
|
|
||||||
- Ensure the prompt is production-grade ready and educates the agent on how to reason and why to reason in that manner.
|
|
||||||
- Provide constraints if necessary and as needed.
|
|
||||||
- The system prompt should be extensive and cover a vast array of potential scenarios to specialize the agent.
|
|
||||||
""",
|
|
||||||
auto_generate_prompt=True,
|
|
||||||
llm=model,
|
|
||||||
)
|
|
||||||
|
|
||||||
# print(prompt_generator_sys_prompt.get_prompt())
|
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue