anthropic working

Former-commit-id: f74a4da934
pull/88/head
Kye 1 year ago
parent faf2c63fd4
commit da120e1aef

@ -11,7 +11,7 @@ from swarms.structs.sequential_workflow import SequentialWorkflow
IMAGE_OF_FINANCIAL_DOC_URL = "bank_statement_2.jpg" IMAGE_OF_FINANCIAL_DOC_URL = "bank_statement_2.jpg"
# Example usage # Example usage
api_key = "" # Your actual API key here api_key = "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" # Your actual API key here
# Initialize the OCR model # Initialize the OCR model
def ocr_model(img: str): def ocr_model(img: str):
@ -21,10 +21,8 @@ def ocr_model(img: str):
# Initialize the language flow # Initialize the language flow
llm = OpenAIChat( llm = OpenAIChat(
model_name="gpt-4-turbo",
openai_api_key=api_key, openai_api_key=api_key,
temperature=0.5, temperature=0.5,
max_tokens=3000,
) )
# Create a prompt for the language model # Create a prompt for the language model

Before

Width:  |  Height:  |  Size: 538 KiB

After

Width:  |  Height:  |  Size: 538 KiB

@ -0,0 +1,11 @@
from swarms.models.anthropic import Anthropic
model = Anthropic(
anthropic_api_key=""
)
task = "Say hello to"
print(model(task))

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry] [tool.poetry]
name = "swarms" name = "swarms"
version = "2.0.7" version = "2.0.8"
description = "Swarms - Pytorch" description = "Swarms - Pytorch"
license = "MIT" license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"] authors = ["Kye Gomez <kye@apac.ai>"]

@ -19,10 +19,9 @@ from swarms.models.layoutlm_document_qa import LayoutLMDocumentQA
# from swarms.models.gpt4v import GPT4Vision # from swarms.models.gpt4v import GPT4Vision
# from swarms.models.dalle3 import Dalle3 # from swarms.models.dalle3 import Dalle3
# from swarms.models.distilled_whisperx import DistilWhisperModel # from swarms.models.distilled_whisperx import DistilWhisperModel
# from swarms.models.fuyu import Fuyu # Not working, wait until they update # from swarms.models.fuyu import Fuyu # Not working, wait until they update
import sys import sys
log_file = open("errors.txt", "w") log_file = open("errors.txt", "w")

@ -1,65 +1,292 @@
import requests import contextlib
import os import datetime
import functools
import importlib
import re
import warnings
from importlib.metadata import version
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
Set,
Tuple,
Union,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms.base import LLM
from langchain.pydantic_v1 import Field, SecretStr, root_validator
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.output import GenerationChunk
from langchain.schema.prompt import PromptValue
from langchain.utils import (
check_package_version,
get_from_dict_or_env,
get_pydantic_field_names,
)
from packaging.version import parse
from requests import HTTPError, Response
class Anthropic:
def xor_args(*arg_groups: Tuple[str, ...]) -> Callable:
"""Validate specified keyword args are mutually exclusive."""
def decorator(func: Callable) -> Callable:
@functools.wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> Any:
"""Validate exactly one arg in each group is not None."""
counts = [
sum(1 for arg in arg_group if kwargs.get(arg) is not None)
for arg_group in arg_groups
]
invalid_groups = [i for i, count in enumerate(counts) if count != 1]
if invalid_groups:
invalid_group_names = [", ".join(arg_groups[i]) for i in invalid_groups]
raise ValueError(
"Exactly one argument in each of the following"
" groups must be defined:"
f" {', '.join(invalid_group_names)}"
)
return func(*args, **kwargs)
return wrapper
return decorator
def raise_for_status_with_text(response: Response) -> None:
"""Raise an error with the response text."""
try:
response.raise_for_status()
except HTTPError as e:
raise ValueError(response.text) from e
@contextlib.contextmanager
def mock_now(dt_value): # type: ignore
"""Context manager for mocking out datetime.now() in unit tests.
Example:
with mock_now(datetime.datetime(2011, 2, 3, 10, 11)):
assert datetime.datetime.now() == datetime.datetime(2011, 2, 3, 10, 11)
""" """
Anthropic large language models. class MockDateTime(datetime.datetime):
"""Mock datetime.datetime.now() with a fixed datetime."""
@classmethod
def now(cls): # type: ignore
# Create a copy of dt_value.
return datetime.datetime(
dt_value.year,
dt_value.month,
dt_value.day,
dt_value.hour,
dt_value.minute,
dt_value.second,
dt_value.microsecond,
dt_value.tzinfo,
)
real_datetime = datetime.datetime
datetime.datetime = MockDateTime
try:
yield datetime.datetime
finally:
datetime.datetime = real_datetime
def guard_import(
module_name: str, *, pip_name: Optional[str] = None, package: Optional[str] = None
) -> Any:
"""Dynamically imports a module and raises a helpful exception if the module is not
installed."""
try:
module = importlib.import_module(module_name, package)
except ImportError:
raise ImportError(
f"Could not import {module_name} python package. "
f"Please install it with `pip install {pip_name or module_name}`."
)
return module
def check_package_version(
package: str,
lt_version: Optional[str] = None,
lte_version: Optional[str] = None,
gt_version: Optional[str] = None,
gte_version: Optional[str] = None,
) -> None:
"""Check the version of a package."""
imported_version = parse(version(package))
if lt_version is not None and imported_version >= parse(lt_version):
raise ValueError(
f"Expected {package} version to be < {lt_version}. Received "
f"{imported_version}."
)
if lte_version is not None and imported_version > parse(lte_version):
raise ValueError(
f"Expected {package} version to be <= {lte_version}. Received "
f"{imported_version}."
)
if gt_version is not None and imported_version <= parse(gt_version):
raise ValueError(
f"Expected {package} version to be > {gt_version}. Received "
f"{imported_version}."
)
if gte_version is not None and imported_version < parse(gte_version):
raise ValueError(
f"Expected {package} version to be >= {gte_version}. Received "
f"{imported_version}."
)
def get_pydantic_field_names(pydantic_cls: Any) -> Set[str]:
"""Get field names, including aliases, for a pydantic class.
Args: Args:
model: The model to use. Defaults to "claude-2". pydantic_cls: Pydantic class."""
max_tokens_to_sample: The maximum number of tokens to sample. all_required_field_names = set()
temperature: The temperature to use for sampling. for field in pydantic_cls.__fields__.values():
top_k: The top_k to use for sampling. all_required_field_names.add(field.name)
top_p: The top_p to use for sampling. if field.has_alias:
streaming: Whether to stream the response or not. all_required_field_names.add(field.alias)
default_request_timeout: The default request timeout to use. return all_required_field_names
Attributes: def build_extra_kwargs(
model: The model to use. extra_kwargs: Dict[str, Any],
max_tokens_to_sample: The maximum number of tokens to sample. values: Dict[str, Any],
temperature: The temperature to use for sampling. all_required_field_names: Set[str],
top_k: The top_k to use for sampling. ) -> Dict[str, Any]:
top_p: The top_p to use for sampling. """Build extra kwargs from values and extra_kwargs.
streaming: Whether to stream the response or not.
default_request_timeout: The default request timeout to use.
anthropic_api_url: The API URL to use.
anthropic_api_key: The API key to use.
Usage:
model_wrapper = Anthropic()
completion = model_wrapper("Hello, my name is")
print(completion)
Args:
extra_kwargs: Extra kwargs passed in by user.
values: Values passed in by user.
all_required_field_names: All required field names for the pydantic class.
""" """
for field_name in list(values):
if field_name in extra_kwargs:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
warnings.warn(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra_kwargs[field_name] = values.pop(field_name)
def __init__( invalid_model_kwargs = all_required_field_names.intersection(extra_kwargs.keys())
self, if invalid_model_kwargs:
model="claude-2", raise ValueError(
max_tokens_to_sample=256, f"Parameters {invalid_model_kwargs} should be specified explicitly. "
temperature=None, f"Instead they were passed in as part of `model_kwargs` parameter."
top_k=None,
top_p=None,
streaming=False,
default_request_timeout=None,
api_key: str = None,
):
self.model = model
self.max_tokens_to_sample = max_tokens_to_sample
self.temperature = temperature
self.top_k = top_k
self.top_p = top_p
self.streaming = streaming
self.default_request_timeout = default_request_timeout or 600
self.anthropic_api_url = os.getenv(
"ANTHROPIC_API_URL", "https://api.anthropic.com"
) )
self.anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
self.api_key = api_key
def _default_params(self): return extra_kwargs
def convert_to_secret_str(value: Union[SecretStr, str]) -> SecretStr:
"""Convert a string to a SecretStr if needed."""
if isinstance(value, SecretStr):
return value
return SecretStr(value)
class _AnthropicCommon(BaseLanguageModel):
client: Any = None #: :meta private:
async_client: Any = None #: :meta private:
model: str = Field(default="claude-2", alias="model_name")
"""Model name to use."""
max_tokens_to_sample: int = Field(default=256, alias="max_tokens")
"""Denotes the number of tokens to predict per generation."""
temperature: Optional[float] = None
"""A non-negative float that tunes the degree of randomness in generation."""
top_k: Optional[int] = None
"""Number of most likely tokens to consider at each step."""
top_p: Optional[float] = None
"""Total probability mass of tokens to consider at each step."""
streaming: bool = False
"""Whether to stream the results."""
default_request_timeout: Optional[float] = None
"""Timeout for requests to Anthropic Completion API. Default is 600 seconds."""
anthropic_api_url: Optional[str] = None
anthropic_api_key: Optional[SecretStr] = None
HUMAN_PROMPT: Optional[str] = None
AI_PROMPT: Optional[str] = None
count_tokens: Optional[Callable[[str], int]] = None
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
@root_validator(pre=True)
def build_extra(cls, values: Dict) -> Dict:
extra = values.get("model_kwargs", {})
all_required_field_names = get_pydantic_field_names(cls)
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["anthropic_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "anthropic_api_key", "ANTHROPIC_API_KEY")
)
# Get custom api url from environment.
values["anthropic_api_url"] = get_from_dict_or_env(
values,
"anthropic_api_url",
"ANTHROPIC_API_URL",
default="https://api.anthropic.com",
)
try:
import anthropic
check_package_version("anthropic", gte_version="0.3")
values["client"] = anthropic.Anthropic(
base_url=values["anthropic_api_url"],
api_key=values["anthropic_api_key"].get_secret_value(),
timeout=values["default_request_timeout"],
)
values["async_client"] = anthropic.AsyncAnthropic(
base_url=values["anthropic_api_url"],
api_key=values["anthropic_api_key"].get_secret_value(),
timeout=values["default_request_timeout"],
)
values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT
values["AI_PROMPT"] = anthropic.AI_PROMPT
values["count_tokens"] = values["client"].count_tokens
except ImportError:
raise ImportError(
"Could not import anthropic python package. "
"Please it install it with `pip install anthropic`."
)
return values
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Anthropic API.""" """Get the default parameters for calling Anthropic API."""
d = { d = {
"max_tokens_to_sample": self.max_tokens_to_sample, "max_tokens_to_sample": self.max_tokens_to_sample,
@ -71,33 +298,229 @@ class Anthropic:
d["top_k"] = self.top_k d["top_k"] = self.top_k
if self.top_p is not None: if self.top_p is not None:
d["top_p"] = self.top_p d["top_p"] = self.top_p
return d return {**d, **self.model_kwargs}
def run(self, task: str, stop=None): @property
"""Call out to Anthropic's completion endpoint.""" def _identifying_params(self) -> Mapping[str, Any]:
api_key = self.api_key or self.anthropic_api_key """Get the identifying parameters."""
stop = stop or [] return {**{}, **self._default_params}
params = self._default_params()
headers = {"Authorization": f"Bearer {api_key}"} def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]:
data = {"prompt": task, "stop_sequences": stop, **params} if not self.HUMAN_PROMPT or not self.AI_PROMPT:
response = requests.post( raise NameError("Please ensure the anthropic package is loaded")
f"{self.anthropic_api_url}/completions",
headers=headers, if stop is None:
json=data, stop = []
timeout=self.default_request_timeout,
# Never want model to invent new turns of Human / Assistant dialog.
stop.extend([self.HUMAN_PROMPT])
return stop
class Anthropic(LLM, _AnthropicCommon):
"""Anthropic large language models.
To use, you should have the ``anthropic`` python package installed, and the
environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
import anthropic
from langchain.llms import Anthropic
model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key")
# Simplest invocation, automatically wrapped with HUMAN_PROMPT
# and AI_PROMPT.
response = model("What are the biggest risks facing humanity?")
# Or if you want to use the chat mode, build a few-shot-prompt, or
# put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT:
raw_prompt = "What are the biggest risks facing humanity?"
prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}"
response = model(prompt)
"""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
arbitrary_types_allowed = True
@root_validator()
def raise_warning(cls, values: Dict) -> Dict:
"""Raise warning that this class is deprecated."""
warnings.warn(
"This Anthropic LLM is deprecated. "
"Please use `from langchain.chat_models import ChatAnthropic` instead"
) )
return response.json().get("completion") return values
def __call__(self, task: str, stop=None): @property
"""Call out to Anthropic's completion endpoint.""" def _llm_type(self) -> str:
stop = stop or [] """Return type of llm."""
params = self._default_params() return "anthropic-llm"
headers = {"Authorization": f"Bearer {self.anthropic_api_key}"}
data = {"prompt": task, "stop_sequences": stop, **params} def _wrap_prompt(self, prompt: str) -> str:
response = requests.post( if not self.HUMAN_PROMPT or not self.AI_PROMPT:
f"{self.anthropic_api_url}/completions", raise NameError("Please ensure the anthropic package is loaded")
headers=headers,
json=data, if prompt.startswith(self.HUMAN_PROMPT):
timeout=self.default_request_timeout, return prompt # Already wrapped.
# Guard against common errors in specifying wrong number of newlines.
corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt)
if n_subs == 1:
return corrected_prompt
# As a last resort, wrap the prompt ourselves to emulate instruct-style.
return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
r"""Call out to Anthropic's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What are the biggest risks facing humanity?"
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
response = model(prompt)
"""
if self.streaming:
completion = ""
for chunk in self._stream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = self.client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
) )
return response.json().get("completion") return response.completion
def convert_prompt(self, prompt: PromptValue) -> str:
return self._wrap_prompt(prompt.to_string())
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Anthropic's completion endpoint asynchronously."""
if self.streaming:
completion = ""
async for chunk in self._astream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
r"""Call Anthropic completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
for token in self.client.completions.create(
prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **params
):
chunk = GenerationChunk(text=token.completion)
yield chunk
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
r"""Call Anthropic completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
async for token in await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**params,
):
chunk = GenerationChunk(text=token.completion)
yield chunk
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
def get_num_tokens(self, text: str) -> int:
"""Calculate number of tokens."""
if not self.count_tokens:
raise NameError("Please ensure the anthropic package is loaded")
return self.count_tokens(text)

@ -544,6 +544,7 @@ class Flow:
def graceful_shutdown(self): def graceful_shutdown(self):
"""Gracefully shutdown the system saving the state""" """Gracefully shutdown the system saving the state"""
print(colored("Shutting down the system...", "red"))
return self.save_state("flow_state.json") return self.save_state("flow_state.json")
def run_with_timeout(self, task: str, timeout: int = 60) -> str: def run_with_timeout(self, task: str, timeout: int = 60) -> str:

@ -265,6 +265,32 @@ class SequentialWorkflow:
attrs=["bold", "underline"], attrs=["bold", "underline"],
) )
) )
def workflow_shutdown(self, **kwargs) -> None:
print(
colored(
"""
Sequential Workflow Shutdown...""",
"red",
attrs=["bold", "underline"],
)
)
def add_objective_to_workflow(self, task: str, **kwargs) -> None:
print(
colored(
"""
Adding Objective to Workflow...""",
"green",
attrs=["bold", "underline"],
)
)
task = Task(description=task, flow=kwargs["flow"], args=list(kwargs["args"]), kwargs=kwargs["kwargs"])
self.tasks.append(task)
def load_workflow_state(self, filepath: str = None, **kwargs) -> None: def load_workflow_state(self, filepath: str = None, **kwargs) -> None:
""" """

Loading…
Cancel
Save