@ -1,5 +0,0 @@
|
|||||||
# from .GroundingDINO.groundingdino.datasets.transforms import T
|
|
||||||
# from .GroundingDINO.groundingdino.models import build_model
|
|
||||||
# from .GroundingDINO.groundingdino.util import box_ops, SLConfig
|
|
||||||
# from .GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
|
||||||
# from .segment_anything.segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
|
|
@ -1,43 +0,0 @@
|
|||||||
batch_size = 1
|
|
||||||
modelname = "groundingdino"
|
|
||||||
backbone = "swin_B_384_22k"
|
|
||||||
position_embedding = "sine"
|
|
||||||
pe_temperatureH = 20
|
|
||||||
pe_temperatureW = 20
|
|
||||||
return_interm_indices = [1, 2, 3]
|
|
||||||
backbone_freeze_keywords = None
|
|
||||||
enc_layers = 6
|
|
||||||
dec_layers = 6
|
|
||||||
pre_norm = False
|
|
||||||
dim_feedforward = 2048
|
|
||||||
hidden_dim = 256
|
|
||||||
dropout = 0.0
|
|
||||||
nheads = 8
|
|
||||||
num_queries = 900
|
|
||||||
query_dim = 4
|
|
||||||
num_patterns = 0
|
|
||||||
num_feature_levels = 4
|
|
||||||
enc_n_points = 4
|
|
||||||
dec_n_points = 4
|
|
||||||
two_stage_type = "standard"
|
|
||||||
two_stage_bbox_embed_share = False
|
|
||||||
two_stage_class_embed_share = False
|
|
||||||
transformer_activation = "relu"
|
|
||||||
dec_pred_bbox_embed_share = True
|
|
||||||
dn_box_noise_scale = 1.0
|
|
||||||
dn_label_noise_ratio = 0.5
|
|
||||||
dn_label_coef = 1.0
|
|
||||||
dn_bbox_coef = 1.0
|
|
||||||
embed_init_tgt = True
|
|
||||||
dn_labelbook_size = 2000
|
|
||||||
max_text_len = 256
|
|
||||||
text_encoder_type = "bert-base-uncased"
|
|
||||||
use_text_enhancer = True
|
|
||||||
use_fusion_layer = True
|
|
||||||
use_checkpoint = True
|
|
||||||
use_transformer_ckpt = True
|
|
||||||
use_text_cross_attention = True
|
|
||||||
text_dropout = 0.0
|
|
||||||
fusion_dropout = 0.0
|
|
||||||
fusion_droppath = 0.1
|
|
||||||
sub_sentence_present = True
|
|
@ -1,43 +0,0 @@
|
|||||||
batch_size = 1
|
|
||||||
modelname = "groundingdino"
|
|
||||||
backbone = "swin_T_224_1k"
|
|
||||||
position_embedding = "sine"
|
|
||||||
pe_temperatureH = 20
|
|
||||||
pe_temperatureW = 20
|
|
||||||
return_interm_indices = [1, 2, 3]
|
|
||||||
backbone_freeze_keywords = None
|
|
||||||
enc_layers = 6
|
|
||||||
dec_layers = 6
|
|
||||||
pre_norm = False
|
|
||||||
dim_feedforward = 2048
|
|
||||||
hidden_dim = 256
|
|
||||||
dropout = 0.0
|
|
||||||
nheads = 8
|
|
||||||
num_queries = 900
|
|
||||||
query_dim = 4
|
|
||||||
num_patterns = 0
|
|
||||||
num_feature_levels = 4
|
|
||||||
enc_n_points = 4
|
|
||||||
dec_n_points = 4
|
|
||||||
two_stage_type = "standard"
|
|
||||||
two_stage_bbox_embed_share = False
|
|
||||||
two_stage_class_embed_share = False
|
|
||||||
transformer_activation = "relu"
|
|
||||||
dec_pred_bbox_embed_share = True
|
|
||||||
dn_box_noise_scale = 1.0
|
|
||||||
dn_label_noise_ratio = 0.5
|
|
||||||
dn_label_coef = 1.0
|
|
||||||
dn_bbox_coef = 1.0
|
|
||||||
embed_init_tgt = True
|
|
||||||
dn_labelbook_size = 2000
|
|
||||||
max_text_len = 256
|
|
||||||
text_encoder_type = "bert-base-uncased"
|
|
||||||
use_text_enhancer = True
|
|
||||||
use_fusion_layer = True
|
|
||||||
use_checkpoint = True
|
|
||||||
use_transformer_ckpt = True
|
|
||||||
use_text_cross_attention = True
|
|
||||||
text_dropout = 0.0
|
|
||||||
fusion_dropout = 0.0
|
|
||||||
fusion_droppath = 0.1
|
|
||||||
sub_sentence_present = True
|
|
@ -1,276 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO. Midified by Shilong Liu.
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
|
|
||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
||||||
"""
|
|
||||||
COCO evaluator that works in distributed mode.
|
|
||||||
|
|
||||||
Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
|
|
||||||
The difference is that there is less copy-pasting from pycocotools
|
|
||||||
in the end of the file, as python3 can suppress prints with contextlib
|
|
||||||
"""
|
|
||||||
import contextlib
|
|
||||||
import copy
|
|
||||||
import os
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pycocotools.mask as mask_util
|
|
||||||
import torch
|
|
||||||
from pycocotools.coco import COCO
|
|
||||||
from pycocotools.cocoeval import COCOeval
|
|
||||||
|
|
||||||
from groundingdino.util.misc import all_gather
|
|
||||||
|
|
||||||
|
|
||||||
class CocoGroundingEvaluator(object):
|
|
||||||
def __init__(self, coco_gt, iou_types, useCats=True):
|
|
||||||
assert isinstance(iou_types, (list, tuple))
|
|
||||||
coco_gt = copy.deepcopy(coco_gt)
|
|
||||||
self.coco_gt = coco_gt
|
|
||||||
|
|
||||||
self.iou_types = iou_types
|
|
||||||
self.coco_eval = {}
|
|
||||||
for iou_type in iou_types:
|
|
||||||
self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
|
|
||||||
self.coco_eval[iou_type].useCats = useCats
|
|
||||||
|
|
||||||
self.img_ids = []
|
|
||||||
self.eval_imgs = {k: [] for k in iou_types}
|
|
||||||
self.useCats = useCats
|
|
||||||
|
|
||||||
def update(self, predictions):
|
|
||||||
img_ids = list(np.unique(list(predictions.keys())))
|
|
||||||
self.img_ids.extend(img_ids)
|
|
||||||
|
|
||||||
for iou_type in self.iou_types:
|
|
||||||
results = self.prepare(predictions, iou_type)
|
|
||||||
|
|
||||||
# suppress pycocotools prints
|
|
||||||
with open(os.devnull, "w") as devnull:
|
|
||||||
with contextlib.redirect_stdout(devnull):
|
|
||||||
coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
|
|
||||||
|
|
||||||
coco_eval = self.coco_eval[iou_type]
|
|
||||||
|
|
||||||
coco_eval.cocoDt = coco_dt
|
|
||||||
coco_eval.params.imgIds = list(img_ids)
|
|
||||||
coco_eval.params.useCats = self.useCats
|
|
||||||
img_ids, eval_imgs = evaluate(coco_eval)
|
|
||||||
|
|
||||||
self.eval_imgs[iou_type].append(eval_imgs)
|
|
||||||
|
|
||||||
def synchronize_between_processes(self):
|
|
||||||
for iou_type in self.iou_types:
|
|
||||||
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
|
|
||||||
create_common_coco_eval(
|
|
||||||
self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type]
|
|
||||||
)
|
|
||||||
|
|
||||||
def accumulate(self):
|
|
||||||
for coco_eval in self.coco_eval.values():
|
|
||||||
coco_eval.accumulate()
|
|
||||||
|
|
||||||
def summarize(self):
|
|
||||||
for iou_type, coco_eval in self.coco_eval.items():
|
|
||||||
print("IoU metric: {}".format(iou_type))
|
|
||||||
coco_eval.summarize()
|
|
||||||
|
|
||||||
def prepare(self, predictions, iou_type):
|
|
||||||
if iou_type == "bbox":
|
|
||||||
return self.prepare_for_coco_detection(predictions)
|
|
||||||
elif iou_type == "segm":
|
|
||||||
return self.prepare_for_coco_segmentation(predictions)
|
|
||||||
elif iou_type == "keypoints":
|
|
||||||
return self.prepare_for_coco_keypoint(predictions)
|
|
||||||
else:
|
|
||||||
raise ValueError("Unknown iou type {}".format(iou_type))
|
|
||||||
|
|
||||||
def prepare_for_coco_detection(self, predictions):
|
|
||||||
coco_results = []
|
|
||||||
for original_id, prediction in predictions.items():
|
|
||||||
if len(prediction) == 0:
|
|
||||||
continue
|
|
||||||
|
|
||||||
boxes = prediction["boxes"]
|
|
||||||
boxes = convert_to_xywh(boxes).tolist()
|
|
||||||
scores = prediction["scores"].tolist()
|
|
||||||
labels = prediction["labels"].tolist()
|
|
||||||
|
|
||||||
coco_results.extend(
|
|
||||||
[
|
|
||||||
{
|
|
||||||
"image_id": original_id,
|
|
||||||
"category_id": labels[k],
|
|
||||||
"bbox": box,
|
|
||||||
"score": scores[k],
|
|
||||||
}
|
|
||||||
for k, box in enumerate(boxes)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
return coco_results
|
|
||||||
|
|
||||||
def prepare_for_coco_segmentation(self, predictions):
|
|
||||||
coco_results = []
|
|
||||||
for original_id, prediction in predictions.items():
|
|
||||||
if len(prediction) == 0:
|
|
||||||
continue
|
|
||||||
|
|
||||||
scores = prediction["scores"]
|
|
||||||
labels = prediction["labels"]
|
|
||||||
masks = prediction["masks"]
|
|
||||||
|
|
||||||
masks = masks > 0.5
|
|
||||||
|
|
||||||
scores = prediction["scores"].tolist()
|
|
||||||
labels = prediction["labels"].tolist()
|
|
||||||
|
|
||||||
rles = [
|
|
||||||
mask_util.encode(
|
|
||||||
np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F")
|
|
||||||
)[0]
|
|
||||||
for mask in masks
|
|
||||||
]
|
|
||||||
for rle in rles:
|
|
||||||
rle["counts"] = rle["counts"].decode("utf-8")
|
|
||||||
|
|
||||||
coco_results.extend(
|
|
||||||
[
|
|
||||||
{
|
|
||||||
"image_id": original_id,
|
|
||||||
"category_id": labels[k],
|
|
||||||
"segmentation": rle,
|
|
||||||
"score": scores[k],
|
|
||||||
}
|
|
||||||
for k, rle in enumerate(rles)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
return coco_results
|
|
||||||
|
|
||||||
def prepare_for_coco_keypoint(self, predictions):
|
|
||||||
coco_results = []
|
|
||||||
for original_id, prediction in predictions.items():
|
|
||||||
if len(prediction) == 0:
|
|
||||||
continue
|
|
||||||
|
|
||||||
boxes = prediction["boxes"]
|
|
||||||
boxes = convert_to_xywh(boxes).tolist()
|
|
||||||
scores = prediction["scores"].tolist()
|
|
||||||
labels = prediction["labels"].tolist()
|
|
||||||
keypoints = prediction["keypoints"]
|
|
||||||
keypoints = keypoints.flatten(start_dim=1).tolist()
|
|
||||||
|
|
||||||
coco_results.extend(
|
|
||||||
[
|
|
||||||
{
|
|
||||||
"image_id": original_id,
|
|
||||||
"category_id": labels[k],
|
|
||||||
"keypoints": keypoint,
|
|
||||||
"score": scores[k],
|
|
||||||
}
|
|
||||||
for k, keypoint in enumerate(keypoints)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
return coco_results
|
|
||||||
|
|
||||||
|
|
||||||
def convert_to_xywh(boxes):
|
|
||||||
xmin, ymin, xmax, ymax = boxes.unbind(1)
|
|
||||||
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
|
|
||||||
|
|
||||||
|
|
||||||
def merge(img_ids, eval_imgs):
|
|
||||||
all_img_ids = all_gather(img_ids)
|
|
||||||
all_eval_imgs = all_gather(eval_imgs)
|
|
||||||
|
|
||||||
merged_img_ids = []
|
|
||||||
for p in all_img_ids:
|
|
||||||
merged_img_ids.extend(p)
|
|
||||||
|
|
||||||
merged_eval_imgs = []
|
|
||||||
for p in all_eval_imgs:
|
|
||||||
merged_eval_imgs.append(p)
|
|
||||||
|
|
||||||
merged_img_ids = np.array(merged_img_ids)
|
|
||||||
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
|
|
||||||
|
|
||||||
# keep only unique (and in sorted order) images
|
|
||||||
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
|
|
||||||
merged_eval_imgs = merged_eval_imgs[..., idx]
|
|
||||||
|
|
||||||
return merged_img_ids, merged_eval_imgs
|
|
||||||
|
|
||||||
|
|
||||||
def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
|
|
||||||
img_ids, eval_imgs = merge(img_ids, eval_imgs)
|
|
||||||
img_ids = list(img_ids)
|
|
||||||
eval_imgs = list(eval_imgs.flatten())
|
|
||||||
|
|
||||||
coco_eval.evalImgs = eval_imgs
|
|
||||||
coco_eval.params.imgIds = img_ids
|
|
||||||
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
|
|
||||||
|
|
||||||
|
|
||||||
#################################################################
|
|
||||||
# From pycocotools, just removed the prints and fixed
|
|
||||||
# a Python3 bug about unicode not defined
|
|
||||||
#################################################################
|
|
||||||
|
|
||||||
|
|
||||||
def evaluate(self):
|
|
||||||
"""
|
|
||||||
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
|
|
||||||
:return: None
|
|
||||||
"""
|
|
||||||
# tic = time.time()
|
|
||||||
# print('Running per image evaluation...')
|
|
||||||
p = self.params
|
|
||||||
# add backward compatibility if useSegm is specified in params
|
|
||||||
if p.useSegm is not None:
|
|
||||||
p.iouType = "segm" if p.useSegm == 1 else "bbox"
|
|
||||||
print(
|
|
||||||
"useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType)
|
|
||||||
)
|
|
||||||
# print('Evaluate annotation type *{}*'.format(p.iouType))
|
|
||||||
p.imgIds = list(np.unique(p.imgIds))
|
|
||||||
if p.useCats:
|
|
||||||
p.catIds = list(np.unique(p.catIds))
|
|
||||||
p.maxDets = sorted(p.maxDets)
|
|
||||||
self.params = p
|
|
||||||
|
|
||||||
self._prepare()
|
|
||||||
# loop through images, area range, max detection number
|
|
||||||
catIds = p.catIds if p.useCats else [-1]
|
|
||||||
|
|
||||||
if p.iouType == "segm" or p.iouType == "bbox":
|
|
||||||
computeIoU = self.computeIoU
|
|
||||||
elif p.iouType == "keypoints":
|
|
||||||
computeIoU = self.computeOks
|
|
||||||
self.ious = {
|
|
||||||
(imgId, catId): computeIoU(imgId, catId)
|
|
||||||
for imgId in p.imgIds
|
|
||||||
for catId in catIds
|
|
||||||
}
|
|
||||||
|
|
||||||
evaluateImg = self.evaluateImg
|
|
||||||
maxDet = p.maxDets[-1]
|
|
||||||
evalImgs = [
|
|
||||||
evaluateImg(imgId, catId, areaRng, maxDet)
|
|
||||||
for catId in catIds
|
|
||||||
for areaRng in p.areaRng
|
|
||||||
for imgId in p.imgIds
|
|
||||||
]
|
|
||||||
# this is NOT in the pycocotools code, but could be done outside
|
|
||||||
evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
|
|
||||||
self._paramsEval = copy.deepcopy(self.params)
|
|
||||||
# toc = time.time()
|
|
||||||
# print('DONE (t={:0.2f}s).'.format(toc-tic))
|
|
||||||
return p.imgIds, evalImgs
|
|
||||||
|
|
||||||
|
|
||||||
#################################################################
|
|
||||||
# end of straight copy from pycocotools, just removing the prints
|
|
||||||
#################################################################
|
|
@ -1,316 +0,0 @@
|
|||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
||||||
"""
|
|
||||||
Transforms and data augmentation for both image + bbox.
|
|
||||||
"""
|
|
||||||
import os
|
|
||||||
import random
|
|
||||||
|
|
||||||
import PIL
|
|
||||||
import torch
|
|
||||||
import torchvision.transforms as T
|
|
||||||
import torchvision.transforms.functional as F
|
|
||||||
|
|
||||||
from groundingdino.util.box_ops import box_xyxy_to_cxcywh
|
|
||||||
from groundingdino.util.misc import interpolate
|
|
||||||
|
|
||||||
|
|
||||||
def crop(image, target, region):
|
|
||||||
cropped_image = F.crop(image, *region)
|
|
||||||
|
|
||||||
target = target.copy()
|
|
||||||
i, j, h, w = region
|
|
||||||
|
|
||||||
# should we do something wrt the original size?
|
|
||||||
target["size"] = torch.tensor([h, w])
|
|
||||||
|
|
||||||
fields = ["labels", "area", "iscrowd", "positive_map"]
|
|
||||||
|
|
||||||
if "boxes" in target:
|
|
||||||
boxes = target["boxes"]
|
|
||||||
max_size = torch.as_tensor([w, h], dtype=torch.float32)
|
|
||||||
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
|
|
||||||
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
|
|
||||||
cropped_boxes = cropped_boxes.clamp(min=0)
|
|
||||||
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
|
|
||||||
target["boxes"] = cropped_boxes.reshape(-1, 4)
|
|
||||||
target["area"] = area
|
|
||||||
fields.append("boxes")
|
|
||||||
|
|
||||||
if "masks" in target:
|
|
||||||
# FIXME should we update the area here if there are no boxes?
|
|
||||||
target["masks"] = target["masks"][:, i : i + h, j : j + w]
|
|
||||||
fields.append("masks")
|
|
||||||
|
|
||||||
# remove elements for which the boxes or masks that have zero area
|
|
||||||
if "boxes" in target or "masks" in target:
|
|
||||||
# favor boxes selection when defining which elements to keep
|
|
||||||
# this is compatible with previous implementation
|
|
||||||
if "boxes" in target:
|
|
||||||
cropped_boxes = target["boxes"].reshape(-1, 2, 2)
|
|
||||||
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
|
|
||||||
else:
|
|
||||||
keep = target["masks"].flatten(1).any(1)
|
|
||||||
|
|
||||||
for field in fields:
|
|
||||||
if field in target:
|
|
||||||
target[field] = target[field][keep]
|
|
||||||
|
|
||||||
if os.environ.get("IPDB_SHILONG_DEBUG", None) == "INFO":
|
|
||||||
# for debug and visualization only.
|
|
||||||
if "strings_positive" in target:
|
|
||||||
target["strings_positive"] = [
|
|
||||||
_i for _i, _j in zip(target["strings_positive"], keep) if _j
|
|
||||||
]
|
|
||||||
|
|
||||||
return cropped_image, target
|
|
||||||
|
|
||||||
|
|
||||||
def hflip(image, target):
|
|
||||||
flipped_image = F.hflip(image)
|
|
||||||
|
|
||||||
w, h = image.size
|
|
||||||
|
|
||||||
target = target.copy()
|
|
||||||
if "boxes" in target:
|
|
||||||
boxes = target["boxes"]
|
|
||||||
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor(
|
|
||||||
[-1, 1, -1, 1]
|
|
||||||
) + torch.as_tensor([w, 0, w, 0])
|
|
||||||
target["boxes"] = boxes
|
|
||||||
|
|
||||||
if "masks" in target:
|
|
||||||
target["masks"] = target["masks"].flip(-1)
|
|
||||||
|
|
||||||
return flipped_image, target
|
|
||||||
|
|
||||||
|
|
||||||
def resize(image, target, size, max_size=None):
|
|
||||||
# size can be min_size (scalar) or (w, h) tuple
|
|
||||||
|
|
||||||
def get_size_with_aspect_ratio(image_size, size, max_size=None):
|
|
||||||
w, h = image_size
|
|
||||||
if max_size is not None:
|
|
||||||
min_original_size = float(min((w, h)))
|
|
||||||
max_original_size = float(max((w, h)))
|
|
||||||
if max_original_size / min_original_size * size > max_size:
|
|
||||||
size = int(round(max_size * min_original_size / max_original_size))
|
|
||||||
|
|
||||||
if (w <= h and w == size) or (h <= w and h == size):
|
|
||||||
return (h, w)
|
|
||||||
|
|
||||||
if w < h:
|
|
||||||
ow = size
|
|
||||||
oh = int(size * h / w)
|
|
||||||
else:
|
|
||||||
oh = size
|
|
||||||
ow = int(size * w / h)
|
|
||||||
|
|
||||||
return (oh, ow)
|
|
||||||
|
|
||||||
def get_size(image_size, size, max_size=None):
|
|
||||||
if isinstance(size, (list, tuple)):
|
|
||||||
return size[::-1]
|
|
||||||
else:
|
|
||||||
return get_size_with_aspect_ratio(image_size, size, max_size)
|
|
||||||
|
|
||||||
size = get_size(image.size, size, max_size)
|
|
||||||
rescaled_image = F.resize(image, size)
|
|
||||||
|
|
||||||
if target is None:
|
|
||||||
return rescaled_image, None
|
|
||||||
|
|
||||||
ratios = tuple(
|
|
||||||
float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)
|
|
||||||
)
|
|
||||||
ratio_width, ratio_height = ratios
|
|
||||||
|
|
||||||
target = target.copy()
|
|
||||||
if "boxes" in target:
|
|
||||||
boxes = target["boxes"]
|
|
||||||
scaled_boxes = boxes * torch.as_tensor(
|
|
||||||
[ratio_width, ratio_height, ratio_width, ratio_height]
|
|
||||||
)
|
|
||||||
target["boxes"] = scaled_boxes
|
|
||||||
|
|
||||||
if "area" in target:
|
|
||||||
area = target["area"]
|
|
||||||
scaled_area = area * (ratio_width * ratio_height)
|
|
||||||
target["area"] = scaled_area
|
|
||||||
|
|
||||||
h, w = size
|
|
||||||
target["size"] = torch.tensor([h, w])
|
|
||||||
|
|
||||||
if "masks" in target:
|
|
||||||
target["masks"] = (
|
|
||||||
interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0]
|
|
||||||
> 0.5
|
|
||||||
)
|
|
||||||
|
|
||||||
return rescaled_image, target
|
|
||||||
|
|
||||||
|
|
||||||
def pad(image, target, padding):
|
|
||||||
# assumes that we only pad on the bottom right corners
|
|
||||||
padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
|
|
||||||
if target is None:
|
|
||||||
return padded_image, None
|
|
||||||
target = target.copy()
|
|
||||||
# should we do something wrt the original size?
|
|
||||||
target["size"] = torch.tensor(padded_image.size[::-1])
|
|
||||||
if "masks" in target:
|
|
||||||
target["masks"] = torch.nn.functional.pad(
|
|
||||||
target["masks"], (0, padding[0], 0, padding[1])
|
|
||||||
)
|
|
||||||
return padded_image, target
|
|
||||||
|
|
||||||
|
|
||||||
class ResizeDebug(object):
|
|
||||||
def __init__(self, size):
|
|
||||||
self.size = size
|
|
||||||
|
|
||||||
def __call__(self, img, target):
|
|
||||||
return resize(img, target, self.size)
|
|
||||||
|
|
||||||
|
|
||||||
class RandomCrop(object):
|
|
||||||
def __init__(self, size):
|
|
||||||
self.size = size
|
|
||||||
|
|
||||||
def __call__(self, img, target):
|
|
||||||
region = T.RandomCrop.get_params(img, self.size)
|
|
||||||
return crop(img, target, region)
|
|
||||||
|
|
||||||
|
|
||||||
class RandomSizeCrop(object):
|
|
||||||
def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False):
|
|
||||||
# respect_boxes: True to keep all boxes
|
|
||||||
# False to tolerence box filter
|
|
||||||
self.min_size = min_size
|
|
||||||
self.max_size = max_size
|
|
||||||
self.respect_boxes = respect_boxes
|
|
||||||
|
|
||||||
def __call__(self, img: PIL.Image.Image, target: dict):
|
|
||||||
init_boxes = len(target["boxes"])
|
|
||||||
max_patience = 10
|
|
||||||
for i in range(max_patience):
|
|
||||||
w = random.randint(self.min_size, min(img.width, self.max_size))
|
|
||||||
h = random.randint(self.min_size, min(img.height, self.max_size))
|
|
||||||
region = T.RandomCrop.get_params(img, [h, w])
|
|
||||||
result_img, result_target = crop(img, target, region)
|
|
||||||
if (
|
|
||||||
not self.respect_boxes
|
|
||||||
or len(result_target["boxes"]) == init_boxes
|
|
||||||
or i == max_patience - 1
|
|
||||||
):
|
|
||||||
return result_img, result_target
|
|
||||||
return result_img, result_target
|
|
||||||
|
|
||||||
|
|
||||||
class CenterCrop(object):
|
|
||||||
def __init__(self, size):
|
|
||||||
self.size = size
|
|
||||||
|
|
||||||
def __call__(self, img, target):
|
|
||||||
image_width, image_height = img.size
|
|
||||||
crop_height, crop_width = self.size
|
|
||||||
crop_top = int(round((image_height - crop_height) / 2.0))
|
|
||||||
crop_left = int(round((image_width - crop_width) / 2.0))
|
|
||||||
return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
|
|
||||||
|
|
||||||
|
|
||||||
class RandomHorizontalFlip(object):
|
|
||||||
def __init__(self, p=0.5):
|
|
||||||
self.p = p
|
|
||||||
|
|
||||||
def __call__(self, img, target):
|
|
||||||
if random.random() < self.p:
|
|
||||||
return hflip(img, target)
|
|
||||||
return img, target
|
|
||||||
|
|
||||||
|
|
||||||
class RandomResize(object):
|
|
||||||
def __init__(self, sizes, max_size=None):
|
|
||||||
assert isinstance(sizes, (list, tuple))
|
|
||||||
self.sizes = sizes
|
|
||||||
self.max_size = max_size
|
|
||||||
|
|
||||||
def __call__(self, img, target=None):
|
|
||||||
size = random.choice(self.sizes)
|
|
||||||
return resize(img, target, size, self.max_size)
|
|
||||||
|
|
||||||
|
|
||||||
class RandomPad(object):
|
|
||||||
def __init__(self, max_pad):
|
|
||||||
self.max_pad = max_pad
|
|
||||||
|
|
||||||
def __call__(self, img, target):
|
|
||||||
pad_x = random.randint(0, self.max_pad)
|
|
||||||
pad_y = random.randint(0, self.max_pad)
|
|
||||||
return pad(img, target, (pad_x, pad_y))
|
|
||||||
|
|
||||||
|
|
||||||
class RandomSelect(object):
|
|
||||||
"""
|
|
||||||
Randomly selects between transforms1 and transforms2,
|
|
||||||
with probability p for transforms1 and (1 - p) for transforms2
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, transforms1, transforms2, p=0.5):
|
|
||||||
self.transforms1 = transforms1
|
|
||||||
self.transforms2 = transforms2
|
|
||||||
self.p = p
|
|
||||||
|
|
||||||
def __call__(self, img, target):
|
|
||||||
if random.random() < self.p:
|
|
||||||
return self.transforms1(img, target)
|
|
||||||
return self.transforms2(img, target)
|
|
||||||
|
|
||||||
|
|
||||||
class ToTensor(object):
|
|
||||||
def __call__(self, img, target):
|
|
||||||
return F.to_tensor(img), target
|
|
||||||
|
|
||||||
|
|
||||||
class RandomErasing(object):
|
|
||||||
def __init__(self, *args, **kwargs):
|
|
||||||
self.eraser = T.RandomErasing(*args, **kwargs)
|
|
||||||
|
|
||||||
def __call__(self, img, target):
|
|
||||||
return self.eraser(img), target
|
|
||||||
|
|
||||||
|
|
||||||
class Normalize(object):
|
|
||||||
def __init__(self, mean, std):
|
|
||||||
self.mean = mean
|
|
||||||
self.std = std
|
|
||||||
|
|
||||||
def __call__(self, image, target=None):
|
|
||||||
image = F.normalize(image, mean=self.mean, std=self.std)
|
|
||||||
if target is None:
|
|
||||||
return image, None
|
|
||||||
target = target.copy()
|
|
||||||
h, w = image.shape[-2:]
|
|
||||||
if "boxes" in target:
|
|
||||||
boxes = target["boxes"]
|
|
||||||
boxes = box_xyxy_to_cxcywh(boxes)
|
|
||||||
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
|
|
||||||
target["boxes"] = boxes
|
|
||||||
return image, target
|
|
||||||
|
|
||||||
|
|
||||||
class Compose(object):
|
|
||||||
def __init__(self, transforms):
|
|
||||||
self.transforms = transforms
|
|
||||||
|
|
||||||
def __call__(self, image, target):
|
|
||||||
for t in self.transforms:
|
|
||||||
image, target = t(image, target)
|
|
||||||
return image, target
|
|
||||||
|
|
||||||
def __repr__(self):
|
|
||||||
format_string = self.__class__.__name__ + "("
|
|
||||||
for t in self.transforms:
|
|
||||||
format_string += "\n"
|
|
||||||
format_string += " {0}".format(t)
|
|
||||||
format_string += "\n)"
|
|
||||||
return format_string
|
|
@ -1,13 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Conditional DETR
|
|
||||||
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Copied from DETR (https://github.com/facebookresearch/detr)
|
|
||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
||||||
# ------------------------------------------------------------------------
|
|
@ -1,241 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Conditional DETR
|
|
||||||
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Copied from DETR (https://github.com/facebookresearch/detr)
|
|
||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
|
|
||||||
"""
|
|
||||||
Backbone modules.
|
|
||||||
"""
|
|
||||||
|
|
||||||
from typing import Dict, List
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn.functional as F
|
|
||||||
import torchvision
|
|
||||||
from torch import nn
|
|
||||||
from torchvision.models._utils import IntermediateLayerGetter
|
|
||||||
|
|
||||||
from groundingdino.util.misc import NestedTensor, is_main_process
|
|
||||||
|
|
||||||
from .position_encoding import build_position_encoding
|
|
||||||
from .swin_transformer import build_swin_transformer
|
|
||||||
|
|
||||||
|
|
||||||
class FrozenBatchNorm2d(torch.nn.Module):
|
|
||||||
"""
|
|
||||||
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
|
||||||
|
|
||||||
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
|
|
||||||
without which any other models than torchvision.models.resnet[18,34,50,101]
|
|
||||||
produce nans.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, n):
|
|
||||||
super(FrozenBatchNorm2d, self).__init__()
|
|
||||||
self.register_buffer("weight", torch.ones(n))
|
|
||||||
self.register_buffer("bias", torch.zeros(n))
|
|
||||||
self.register_buffer("running_mean", torch.zeros(n))
|
|
||||||
self.register_buffer("running_var", torch.ones(n))
|
|
||||||
|
|
||||||
def _load_from_state_dict(
|
|
||||||
self,
|
|
||||||
state_dict,
|
|
||||||
prefix,
|
|
||||||
local_metadata,
|
|
||||||
strict,
|
|
||||||
missing_keys,
|
|
||||||
unexpected_keys,
|
|
||||||
error_msgs,
|
|
||||||
):
|
|
||||||
num_batches_tracked_key = prefix + "num_batches_tracked"
|
|
||||||
if num_batches_tracked_key in state_dict:
|
|
||||||
del state_dict[num_batches_tracked_key]
|
|
||||||
|
|
||||||
super(FrozenBatchNorm2d, self)._load_from_state_dict(
|
|
||||||
state_dict,
|
|
||||||
prefix,
|
|
||||||
local_metadata,
|
|
||||||
strict,
|
|
||||||
missing_keys,
|
|
||||||
unexpected_keys,
|
|
||||||
error_msgs,
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
# move reshapes to the beginning
|
|
||||||
# to make it fuser-friendly
|
|
||||||
w = self.weight.reshape(1, -1, 1, 1)
|
|
||||||
b = self.bias.reshape(1, -1, 1, 1)
|
|
||||||
rv = self.running_var.reshape(1, -1, 1, 1)
|
|
||||||
rm = self.running_mean.reshape(1, -1, 1, 1)
|
|
||||||
eps = 1e-5
|
|
||||||
scale = w * (rv + eps).rsqrt()
|
|
||||||
bias = b - rm * scale
|
|
||||||
return x * scale + bias
|
|
||||||
|
|
||||||
|
|
||||||
class BackboneBase(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
backbone: nn.Module,
|
|
||||||
train_backbone: bool,
|
|
||||||
num_channels: int,
|
|
||||||
return_interm_indices: list,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
for name, parameter in backbone.named_parameters():
|
|
||||||
if (
|
|
||||||
not train_backbone
|
|
||||||
or "layer2" not in name
|
|
||||||
and "layer3" not in name
|
|
||||||
and "layer4" not in name
|
|
||||||
):
|
|
||||||
parameter.requires_grad_(False)
|
|
||||||
|
|
||||||
return_layers = {}
|
|
||||||
for idx, layer_index in enumerate(return_interm_indices):
|
|
||||||
return_layers.update(
|
|
||||||
{
|
|
||||||
"layer{}".format(5 - len(return_interm_indices) + idx): "{}".format(
|
|
||||||
layer_index
|
|
||||||
)
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
# if len:
|
|
||||||
# if use_stage1_feature:
|
|
||||||
# return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
|
|
||||||
# else:
|
|
||||||
# return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"}
|
|
||||||
# else:
|
|
||||||
# return_layers = {'layer4': "0"}
|
|
||||||
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
|
|
||||||
self.num_channels = num_channels
|
|
||||||
|
|
||||||
def forward(self, tensor_list: NestedTensor):
|
|
||||||
xs = self.body(tensor_list.tensors)
|
|
||||||
out: Dict[str, NestedTensor] = {}
|
|
||||||
for name, x in xs.items():
|
|
||||||
m = tensor_list.mask
|
|
||||||
assert m is not None
|
|
||||||
mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
|
|
||||||
out[name] = NestedTensor(x, mask)
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
class Backbone(BackboneBase):
|
|
||||||
"""ResNet backbone with frozen BatchNorm."""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
name: str,
|
|
||||||
train_backbone: bool,
|
|
||||||
dilation: bool,
|
|
||||||
return_interm_indices: list,
|
|
||||||
batch_norm=FrozenBatchNorm2d,
|
|
||||||
):
|
|
||||||
if name in ["resnet18", "resnet34", "resnet50", "resnet101"]:
|
|
||||||
backbone = getattr(torchvision.models, name)(
|
|
||||||
replace_stride_with_dilation=[False, False, dilation],
|
|
||||||
pretrained=is_main_process(),
|
|
||||||
norm_layer=batch_norm,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise NotImplementedError("Why you can get here with name {}".format(name))
|
|
||||||
# num_channels = 512 if name in ('resnet18', 'resnet34') else 2048
|
|
||||||
assert name not in (
|
|
||||||
"resnet18",
|
|
||||||
"resnet34",
|
|
||||||
), "Only resnet50 and resnet101 are available."
|
|
||||||
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
|
|
||||||
num_channels_all = [256, 512, 1024, 2048]
|
|
||||||
num_channels = num_channels_all[4 - len(return_interm_indices) :]
|
|
||||||
super().__init__(backbone, train_backbone, num_channels, return_interm_indices)
|
|
||||||
|
|
||||||
|
|
||||||
class Joiner(nn.Sequential):
|
|
||||||
def __init__(self, backbone, position_embedding):
|
|
||||||
super().__init__(backbone, position_embedding)
|
|
||||||
|
|
||||||
def forward(self, tensor_list: NestedTensor):
|
|
||||||
xs = self[0](tensor_list)
|
|
||||||
out: List[NestedTensor] = []
|
|
||||||
pos = []
|
|
||||||
for name, x in xs.items():
|
|
||||||
out.append(x)
|
|
||||||
# position encoding
|
|
||||||
pos.append(self[1](x).to(x.tensors.dtype))
|
|
||||||
|
|
||||||
return out, pos
|
|
||||||
|
|
||||||
|
|
||||||
def build_backbone(args):
|
|
||||||
"""
|
|
||||||
Useful args:
|
|
||||||
- backbone: backbone name
|
|
||||||
- lr_backbone:
|
|
||||||
- dilation
|
|
||||||
- return_interm_indices: available: [0,1,2,3], [1,2,3], [3]
|
|
||||||
- backbone_freeze_keywords:
|
|
||||||
- use_checkpoint: for swin only for now
|
|
||||||
|
|
||||||
"""
|
|
||||||
position_embedding = build_position_encoding(args)
|
|
||||||
train_backbone = True
|
|
||||||
if not train_backbone:
|
|
||||||
raise ValueError("Please set lr_backbone > 0")
|
|
||||||
return_interm_indices = args.return_interm_indices
|
|
||||||
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
|
|
||||||
args.backbone_freeze_keywords
|
|
||||||
use_checkpoint = getattr(args, "use_checkpoint", False)
|
|
||||||
|
|
||||||
if args.backbone in ["resnet50", "resnet101"]:
|
|
||||||
backbone = Backbone(
|
|
||||||
args.backbone,
|
|
||||||
train_backbone,
|
|
||||||
args.dilation,
|
|
||||||
return_interm_indices,
|
|
||||||
batch_norm=FrozenBatchNorm2d,
|
|
||||||
)
|
|
||||||
bb_num_channels = backbone.num_channels
|
|
||||||
elif args.backbone in [
|
|
||||||
"swin_T_224_1k",
|
|
||||||
"swin_B_224_22k",
|
|
||||||
"swin_B_384_22k",
|
|
||||||
"swin_L_224_22k",
|
|
||||||
"swin_L_384_22k",
|
|
||||||
]:
|
|
||||||
pretrain_img_size = int(args.backbone.split("_")[-2])
|
|
||||||
backbone = build_swin_transformer(
|
|
||||||
args.backbone,
|
|
||||||
pretrain_img_size=pretrain_img_size,
|
|
||||||
out_indices=tuple(return_interm_indices),
|
|
||||||
dilation=False,
|
|
||||||
use_checkpoint=use_checkpoint,
|
|
||||||
)
|
|
||||||
|
|
||||||
bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :]
|
|
||||||
else:
|
|
||||||
raise NotImplementedError("Unknown backbone {}".format(args.backbone))
|
|
||||||
|
|
||||||
assert len(bb_num_channels) == len(
|
|
||||||
return_interm_indices
|
|
||||||
), f"len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}"
|
|
||||||
|
|
||||||
model = Joiner(backbone, position_embedding)
|
|
||||||
model.num_channels = bb_num_channels
|
|
||||||
assert isinstance(
|
|
||||||
bb_num_channels, List
|
|
||||||
), "bb_num_channels is expected to be a List but {}".format(type(bb_num_channels))
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
return model
|
|
@ -1,197 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# DINO
|
|
||||||
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Conditional DETR
|
|
||||||
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Copied from DETR (https://github.com/facebookresearch/detr)
|
|
||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
|
|
||||||
"""
|
|
||||||
Various positional encodings for the transformer.
|
|
||||||
"""
|
|
||||||
import math
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import nn
|
|
||||||
|
|
||||||
from groundingdino.util.misc import NestedTensor
|
|
||||||
|
|
||||||
|
|
||||||
class PositionEmbeddingSine(nn.Module):
|
|
||||||
"""
|
|
||||||
This is a more standard version of the position embedding, very similar to the one
|
|
||||||
used by the Attention is all you need paper, generalized to work on images.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.num_pos_feats = num_pos_feats
|
|
||||||
self.temperature = temperature
|
|
||||||
self.normalize = normalize
|
|
||||||
if scale is not None and normalize is False:
|
|
||||||
raise ValueError("normalize should be True if scale is passed")
|
|
||||||
if scale is None:
|
|
||||||
scale = 2 * math.pi
|
|
||||||
self.scale = scale
|
|
||||||
|
|
||||||
def forward(self, tensor_list: NestedTensor):
|
|
||||||
x = tensor_list.tensors
|
|
||||||
mask = tensor_list.mask
|
|
||||||
assert mask is not None
|
|
||||||
not_mask = ~mask
|
|
||||||
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
|
||||||
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
|
||||||
if self.normalize:
|
|
||||||
eps = 1e-6
|
|
||||||
# if os.environ.get("SHILONG_AMP", None) == '1':
|
|
||||||
# eps = 1e-4
|
|
||||||
# else:
|
|
||||||
# eps = 1e-6
|
|
||||||
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
|
||||||
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
|
||||||
|
|
||||||
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
|
||||||
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
|
||||||
|
|
||||||
pos_x = x_embed[:, :, :, None] / dim_t
|
|
||||||
pos_y = y_embed[:, :, :, None] / dim_t
|
|
||||||
pos_x = torch.stack(
|
|
||||||
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
|
||||||
).flatten(3)
|
|
||||||
pos_y = torch.stack(
|
|
||||||
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
|
||||||
).flatten(3)
|
|
||||||
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
|
||||||
return pos
|
|
||||||
|
|
||||||
|
|
||||||
class PositionEmbeddingSineHW(nn.Module):
|
|
||||||
"""
|
|
||||||
This is a more standard version of the position embedding, very similar to the one
|
|
||||||
used by the Attention is all you need paper, generalized to work on images.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
num_pos_feats=64,
|
|
||||||
temperatureH=10000,
|
|
||||||
temperatureW=10000,
|
|
||||||
normalize=False,
|
|
||||||
scale=None,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.num_pos_feats = num_pos_feats
|
|
||||||
self.temperatureH = temperatureH
|
|
||||||
self.temperatureW = temperatureW
|
|
||||||
self.normalize = normalize
|
|
||||||
if scale is not None and normalize is False:
|
|
||||||
raise ValueError("normalize should be True if scale is passed")
|
|
||||||
if scale is None:
|
|
||||||
scale = 2 * math.pi
|
|
||||||
self.scale = scale
|
|
||||||
|
|
||||||
def forward(self, tensor_list: NestedTensor):
|
|
||||||
x = tensor_list.tensors
|
|
||||||
mask = tensor_list.mask
|
|
||||||
assert mask is not None
|
|
||||||
not_mask = ~mask
|
|
||||||
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
|
||||||
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
|
||||||
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
|
|
||||||
if self.normalize:
|
|
||||||
eps = 1e-6
|
|
||||||
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
|
||||||
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
|
||||||
|
|
||||||
dim_tx = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
|
||||||
dim_tx = self.temperatureW ** (
|
|
||||||
2 * (torch.div(dim_tx, 2, rounding_mode="floor")) / self.num_pos_feats
|
|
||||||
)
|
|
||||||
pos_x = x_embed[:, :, :, None] / dim_tx
|
|
||||||
|
|
||||||
dim_ty = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
|
||||||
dim_ty = self.temperatureH ** (
|
|
||||||
2 * (torch.div(dim_ty, 2, rounding_mode="floor")) / self.num_pos_feats
|
|
||||||
)
|
|
||||||
pos_y = y_embed[:, :, :, None] / dim_ty
|
|
||||||
|
|
||||||
pos_x = torch.stack(
|
|
||||||
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
|
||||||
).flatten(3)
|
|
||||||
pos_y = torch.stack(
|
|
||||||
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
|
||||||
).flatten(3)
|
|
||||||
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
|
||||||
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
|
|
||||||
return pos
|
|
||||||
|
|
||||||
|
|
||||||
class PositionEmbeddingLearned(nn.Module):
|
|
||||||
"""
|
|
||||||
Absolute pos embedding, learned.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, num_pos_feats=256):
|
|
||||||
super().__init__()
|
|
||||||
self.row_embed = nn.Embedding(50, num_pos_feats)
|
|
||||||
self.col_embed = nn.Embedding(50, num_pos_feats)
|
|
||||||
self.reset_parameters()
|
|
||||||
|
|
||||||
def reset_parameters(self):
|
|
||||||
nn.init.uniform_(self.row_embed.weight)
|
|
||||||
nn.init.uniform_(self.col_embed.weight)
|
|
||||||
|
|
||||||
def forward(self, tensor_list: NestedTensor):
|
|
||||||
x = tensor_list.tensors
|
|
||||||
h, w = x.shape[-2:]
|
|
||||||
i = torch.arange(w, device=x.device)
|
|
||||||
j = torch.arange(h, device=x.device)
|
|
||||||
x_emb = self.col_embed(i)
|
|
||||||
y_emb = self.row_embed(j)
|
|
||||||
pos = (
|
|
||||||
torch.cat(
|
|
||||||
[
|
|
||||||
x_emb.unsqueeze(0).repeat(h, 1, 1),
|
|
||||||
y_emb.unsqueeze(1).repeat(1, w, 1),
|
|
||||||
],
|
|
||||||
dim=-1,
|
|
||||||
)
|
|
||||||
.permute(2, 0, 1)
|
|
||||||
.unsqueeze(0)
|
|
||||||
.repeat(x.shape[0], 1, 1, 1)
|
|
||||||
)
|
|
||||||
return pos
|
|
||||||
|
|
||||||
|
|
||||||
def build_position_encoding(args):
|
|
||||||
N_steps = args.hidden_dim // 2
|
|
||||||
if args.position_embedding in ("v2", "sine"):
|
|
||||||
# TODO find a better way of exposing other arguments
|
|
||||||
position_embedding = PositionEmbeddingSineHW(
|
|
||||||
N_steps,
|
|
||||||
temperatureH=args.pe_temperatureH,
|
|
||||||
temperatureW=args.pe_temperatureW,
|
|
||||||
normalize=True,
|
|
||||||
)
|
|
||||||
elif args.position_embedding in ("v3", "learned"):
|
|
||||||
position_embedding = PositionEmbeddingLearned(N_steps)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"not supported {args.position_embedding}")
|
|
||||||
|
|
||||||
return position_embedding
|
|
@ -1,856 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# DINO
|
|
||||||
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# --------------------------------------------------------
|
|
||||||
# modified from https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/blob/master/mmdet/models/backbones/swin_transformer.py
|
|
||||||
# --------------------------------------------------------
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
import torch.utils.checkpoint as checkpoint
|
|
||||||
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
|
||||||
|
|
||||||
from groundingdino.util.misc import NestedTensor
|
|
||||||
|
|
||||||
|
|
||||||
class Mlp(nn.Module):
|
|
||||||
"""Multilayer perceptron."""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
in_features,
|
|
||||||
hidden_features=None,
|
|
||||||
out_features=None,
|
|
||||||
act_layer=nn.GELU,
|
|
||||||
drop=0.0,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
out_features = out_features or in_features
|
|
||||||
hidden_features = hidden_features or in_features
|
|
||||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
||||||
self.act = act_layer()
|
|
||||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
||||||
self.drop = nn.Dropout(drop)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.fc1(x)
|
|
||||||
x = self.act(x)
|
|
||||||
x = self.drop(x)
|
|
||||||
x = self.fc2(x)
|
|
||||||
x = self.drop(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def window_partition(x, window_size):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
x: (B, H, W, C)
|
|
||||||
window_size (int): window size
|
|
||||||
Returns:
|
|
||||||
windows: (num_windows*B, window_size, window_size, C)
|
|
||||||
"""
|
|
||||||
B, H, W, C = x.shape
|
|
||||||
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
|
||||||
windows = (
|
|
||||||
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
|
||||||
)
|
|
||||||
return windows
|
|
||||||
|
|
||||||
|
|
||||||
def window_reverse(windows, window_size, H, W):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
windows: (num_windows*B, window_size, window_size, C)
|
|
||||||
window_size (int): Window size
|
|
||||||
H (int): Height of image
|
|
||||||
W (int): Width of image
|
|
||||||
Returns:
|
|
||||||
x: (B, H, W, C)
|
|
||||||
"""
|
|
||||||
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
|
||||||
x = windows.view(
|
|
||||||
B, H // window_size, W // window_size, window_size, window_size, -1
|
|
||||||
)
|
|
||||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class WindowAttention(nn.Module):
|
|
||||||
"""Window based multi-head self attention (W-MSA) module with relative position bias.
|
|
||||||
It supports both of shifted and non-shifted window.
|
|
||||||
Args:
|
|
||||||
dim (int): Number of input channels.
|
|
||||||
window_size (tuple[int]): The height and width of the window.
|
|
||||||
num_heads (int): Number of attention heads.
|
|
||||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
|
||||||
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
|
||||||
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
|
||||||
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
dim,
|
|
||||||
window_size,
|
|
||||||
num_heads,
|
|
||||||
qkv_bias=True,
|
|
||||||
qk_scale=None,
|
|
||||||
attn_drop=0.0,
|
|
||||||
proj_drop=0.0,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.dim = dim
|
|
||||||
self.window_size = window_size # Wh, Ww
|
|
||||||
self.num_heads = num_heads
|
|
||||||
head_dim = dim // num_heads
|
|
||||||
self.scale = qk_scale or head_dim**-0.5
|
|
||||||
|
|
||||||
# define a parameter table of relative position bias
|
|
||||||
self.relative_position_bias_table = nn.Parameter(
|
|
||||||
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
|
||||||
) # 2*Wh-1 * 2*Ww-1, nH
|
|
||||||
|
|
||||||
# get pair-wise relative position index for each token inside the window
|
|
||||||
coords_h = torch.arange(self.window_size[0])
|
|
||||||
coords_w = torch.arange(self.window_size[1])
|
|
||||||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
|
||||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
|
||||||
relative_coords = (
|
|
||||||
coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
||||||
) # 2, Wh*Ww, Wh*Ww
|
|
||||||
relative_coords = relative_coords.permute(
|
|
||||||
1, 2, 0
|
|
||||||
).contiguous() # Wh*Ww, Wh*Ww, 2
|
|
||||||
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
|
||||||
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
||||||
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
||||||
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
|
||||||
self.register_buffer("relative_position_index", relative_position_index)
|
|
||||||
|
|
||||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
||||||
self.attn_drop = nn.Dropout(attn_drop)
|
|
||||||
self.proj = nn.Linear(dim, dim)
|
|
||||||
self.proj_drop = nn.Dropout(proj_drop)
|
|
||||||
|
|
||||||
trunc_normal_(self.relative_position_bias_table, std=0.02)
|
|
||||||
self.softmax = nn.Softmax(dim=-1)
|
|
||||||
|
|
||||||
def forward(self, x, mask=None):
|
|
||||||
"""Forward function.
|
|
||||||
Args:
|
|
||||||
x: input features with shape of (num_windows*B, N, C)
|
|
||||||
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
|
||||||
"""
|
|
||||||
B_, N, C = x.shape
|
|
||||||
qkv = (
|
|
||||||
self.qkv(x)
|
|
||||||
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
|
|
||||||
.permute(2, 0, 3, 1, 4)
|
|
||||||
)
|
|
||||||
q, k, v = (
|
|
||||||
qkv[0],
|
|
||||||
qkv[1],
|
|
||||||
qkv[2],
|
|
||||||
) # make torchscript happy (cannot use tensor as tuple)
|
|
||||||
|
|
||||||
q = q * self.scale
|
|
||||||
attn = q @ k.transpose(-2, -1)
|
|
||||||
|
|
||||||
relative_position_bias = self.relative_position_bias_table[
|
|
||||||
self.relative_position_index.view(-1)
|
|
||||||
].view(
|
|
||||||
self.window_size[0] * self.window_size[1],
|
|
||||||
self.window_size[0] * self.window_size[1],
|
|
||||||
-1,
|
|
||||||
) # Wh*Ww,Wh*Ww,nH
|
|
||||||
relative_position_bias = relative_position_bias.permute(
|
|
||||||
2, 0, 1
|
|
||||||
).contiguous() # nH, Wh*Ww, Wh*Ww
|
|
||||||
attn = attn + relative_position_bias.unsqueeze(0)
|
|
||||||
|
|
||||||
if mask is not None:
|
|
||||||
nW = mask.shape[0]
|
|
||||||
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
|
|
||||||
1
|
|
||||||
).unsqueeze(0)
|
|
||||||
attn = attn.view(-1, self.num_heads, N, N)
|
|
||||||
attn = self.softmax(attn)
|
|
||||||
else:
|
|
||||||
attn = self.softmax(attn)
|
|
||||||
|
|
||||||
attn = self.attn_drop(attn)
|
|
||||||
|
|
||||||
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
|
||||||
x = self.proj(x)
|
|
||||||
x = self.proj_drop(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class SwinTransformerBlock(nn.Module):
|
|
||||||
"""Swin Transformer Block.
|
|
||||||
Args:
|
|
||||||
dim (int): Number of input channels.
|
|
||||||
num_heads (int): Number of attention heads.
|
|
||||||
window_size (int): Window size.
|
|
||||||
shift_size (int): Shift size for SW-MSA.
|
|
||||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
||||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
|
||||||
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
|
||||||
drop (float, optional): Dropout rate. Default: 0.0
|
|
||||||
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
|
||||||
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
|
||||||
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
|
||||||
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
dim,
|
|
||||||
num_heads,
|
|
||||||
window_size=7,
|
|
||||||
shift_size=0,
|
|
||||||
mlp_ratio=4.0,
|
|
||||||
qkv_bias=True,
|
|
||||||
qk_scale=None,
|
|
||||||
drop=0.0,
|
|
||||||
attn_drop=0.0,
|
|
||||||
drop_path=0.0,
|
|
||||||
act_layer=nn.GELU,
|
|
||||||
norm_layer=nn.LayerNorm,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.dim = dim
|
|
||||||
self.num_heads = num_heads
|
|
||||||
self.window_size = window_size
|
|
||||||
self.shift_size = shift_size
|
|
||||||
self.mlp_ratio = mlp_ratio
|
|
||||||
assert (
|
|
||||||
0 <= self.shift_size < self.window_size
|
|
||||||
), "shift_size must in 0-window_size"
|
|
||||||
|
|
||||||
self.norm1 = norm_layer(dim)
|
|
||||||
self.attn = WindowAttention(
|
|
||||||
dim,
|
|
||||||
window_size=to_2tuple(self.window_size),
|
|
||||||
num_heads=num_heads,
|
|
||||||
qkv_bias=qkv_bias,
|
|
||||||
qk_scale=qk_scale,
|
|
||||||
attn_drop=attn_drop,
|
|
||||||
proj_drop=drop,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
||||||
self.norm2 = norm_layer(dim)
|
|
||||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
||||||
self.mlp = Mlp(
|
|
||||||
in_features=dim,
|
|
||||||
hidden_features=mlp_hidden_dim,
|
|
||||||
act_layer=act_layer,
|
|
||||||
drop=drop,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.H = None
|
|
||||||
self.W = None
|
|
||||||
|
|
||||||
def forward(self, x, mask_matrix):
|
|
||||||
"""Forward function.
|
|
||||||
Args:
|
|
||||||
x: Input feature, tensor size (B, H*W, C).
|
|
||||||
H, W: Spatial resolution of the input feature.
|
|
||||||
mask_matrix: Attention mask for cyclic shift.
|
|
||||||
"""
|
|
||||||
B, L, C = x.shape
|
|
||||||
H, W = self.H, self.W
|
|
||||||
assert L == H * W, "input feature has wrong size"
|
|
||||||
|
|
||||||
shortcut = x
|
|
||||||
x = self.norm1(x)
|
|
||||||
x = x.view(B, H, W, C)
|
|
||||||
|
|
||||||
# pad feature maps to multiples of window size
|
|
||||||
pad_l = pad_t = 0
|
|
||||||
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
|
||||||
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
|
||||||
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
|
||||||
_, Hp, Wp, _ = x.shape
|
|
||||||
|
|
||||||
# cyclic shift
|
|
||||||
if self.shift_size > 0:
|
|
||||||
shifted_x = torch.roll(
|
|
||||||
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
|
|
||||||
)
|
|
||||||
attn_mask = mask_matrix
|
|
||||||
else:
|
|
||||||
shifted_x = x
|
|
||||||
attn_mask = None
|
|
||||||
|
|
||||||
# partition windows
|
|
||||||
x_windows = window_partition(
|
|
||||||
shifted_x, self.window_size
|
|
||||||
) # nW*B, window_size, window_size, C
|
|
||||||
x_windows = x_windows.view(
|
|
||||||
-1, self.window_size * self.window_size, C
|
|
||||||
) # nW*B, window_size*window_size, C
|
|
||||||
|
|
||||||
# W-MSA/SW-MSA
|
|
||||||
attn_windows = self.attn(
|
|
||||||
x_windows, mask=attn_mask
|
|
||||||
) # nW*B, window_size*window_size, C
|
|
||||||
|
|
||||||
# merge windows
|
|
||||||
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
|
||||||
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
|
||||||
|
|
||||||
# reverse cyclic shift
|
|
||||||
if self.shift_size > 0:
|
|
||||||
x = torch.roll(
|
|
||||||
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
x = shifted_x
|
|
||||||
|
|
||||||
if pad_r > 0 or pad_b > 0:
|
|
||||||
x = x[:, :H, :W, :].contiguous()
|
|
||||||
|
|
||||||
x = x.view(B, H * W, C)
|
|
||||||
|
|
||||||
# FFN
|
|
||||||
x = shortcut + self.drop_path(x)
|
|
||||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class PatchMerging(nn.Module):
|
|
||||||
"""Patch Merging Layer
|
|
||||||
Args:
|
|
||||||
dim (int): Number of input channels.
|
|
||||||
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
|
||||||
super().__init__()
|
|
||||||
self.dim = dim
|
|
||||||
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
|
||||||
self.norm = norm_layer(4 * dim)
|
|
||||||
|
|
||||||
def forward(self, x, H, W):
|
|
||||||
"""Forward function.
|
|
||||||
Args:
|
|
||||||
x: Input feature, tensor size (B, H*W, C).
|
|
||||||
H, W: Spatial resolution of the input feature.
|
|
||||||
"""
|
|
||||||
B, L, C = x.shape
|
|
||||||
assert L == H * W, "input feature has wrong size"
|
|
||||||
|
|
||||||
x = x.view(B, H, W, C)
|
|
||||||
|
|
||||||
# padding
|
|
||||||
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
|
||||||
if pad_input:
|
|
||||||
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
|
||||||
|
|
||||||
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
|
||||||
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
|
||||||
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
|
||||||
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
|
||||||
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
|
||||||
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
|
||||||
|
|
||||||
x = self.norm(x)
|
|
||||||
x = self.reduction(x)
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class BasicLayer(nn.Module):
|
|
||||||
"""A basic Swin Transformer layer for one stage.
|
|
||||||
Args:
|
|
||||||
dim (int): Number of feature channels
|
|
||||||
depth (int): Depths of this stage.
|
|
||||||
num_heads (int): Number of attention head.
|
|
||||||
window_size (int): Local window size. Default: 7.
|
|
||||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
|
||||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
|
||||||
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
|
||||||
drop (float, optional): Dropout rate. Default: 0.0
|
|
||||||
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
|
||||||
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
|
||||||
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
||||||
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
|
||||||
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
dim,
|
|
||||||
depth,
|
|
||||||
num_heads,
|
|
||||||
window_size=7,
|
|
||||||
mlp_ratio=4.0,
|
|
||||||
qkv_bias=True,
|
|
||||||
qk_scale=None,
|
|
||||||
drop=0.0,
|
|
||||||
attn_drop=0.0,
|
|
||||||
drop_path=0.0,
|
|
||||||
norm_layer=nn.LayerNorm,
|
|
||||||
downsample=None,
|
|
||||||
use_checkpoint=False,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.window_size = window_size
|
|
||||||
self.shift_size = window_size // 2
|
|
||||||
self.depth = depth
|
|
||||||
self.use_checkpoint = use_checkpoint
|
|
||||||
|
|
||||||
# build blocks
|
|
||||||
self.blocks = nn.ModuleList(
|
|
||||||
[
|
|
||||||
SwinTransformerBlock(
|
|
||||||
dim=dim,
|
|
||||||
num_heads=num_heads,
|
|
||||||
window_size=window_size,
|
|
||||||
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
|
||||||
mlp_ratio=mlp_ratio,
|
|
||||||
qkv_bias=qkv_bias,
|
|
||||||
qk_scale=qk_scale,
|
|
||||||
drop=drop,
|
|
||||||
attn_drop=attn_drop,
|
|
||||||
drop_path=drop_path[i]
|
|
||||||
if isinstance(drop_path, list)
|
|
||||||
else drop_path,
|
|
||||||
norm_layer=norm_layer,
|
|
||||||
)
|
|
||||||
for i in range(depth)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
# patch merging layer
|
|
||||||
if downsample is not None:
|
|
||||||
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
|
||||||
else:
|
|
||||||
self.downsample = None
|
|
||||||
|
|
||||||
def forward(self, x, H, W):
|
|
||||||
"""Forward function.
|
|
||||||
Args:
|
|
||||||
x: Input feature, tensor size (B, H*W, C).
|
|
||||||
H, W: Spatial resolution of the input feature.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# calculate attention mask for SW-MSA
|
|
||||||
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
|
||||||
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
|
||||||
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
|
||||||
h_slices = (
|
|
||||||
slice(0, -self.window_size),
|
|
||||||
slice(-self.window_size, -self.shift_size),
|
|
||||||
slice(-self.shift_size, None),
|
|
||||||
)
|
|
||||||
w_slices = (
|
|
||||||
slice(0, -self.window_size),
|
|
||||||
slice(-self.window_size, -self.shift_size),
|
|
||||||
slice(-self.shift_size, None),
|
|
||||||
)
|
|
||||||
cnt = 0
|
|
||||||
for h in h_slices:
|
|
||||||
for w in w_slices:
|
|
||||||
img_mask[:, h, w, :] = cnt
|
|
||||||
cnt += 1
|
|
||||||
|
|
||||||
mask_windows = window_partition(
|
|
||||||
img_mask, self.window_size
|
|
||||||
) # nW, window_size, window_size, 1
|
|
||||||
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
|
||||||
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
|
||||||
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
|
|
||||||
attn_mask == 0, float(0.0)
|
|
||||||
)
|
|
||||||
|
|
||||||
for blk in self.blocks:
|
|
||||||
blk.H, blk.W = H, W
|
|
||||||
if self.use_checkpoint:
|
|
||||||
x = checkpoint.checkpoint(blk, x, attn_mask)
|
|
||||||
else:
|
|
||||||
x = blk(x, attn_mask)
|
|
||||||
if self.downsample is not None:
|
|
||||||
x_down = self.downsample(x, H, W)
|
|
||||||
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
|
||||||
return x, H, W, x_down, Wh, Ww
|
|
||||||
else:
|
|
||||||
return x, H, W, x, H, W
|
|
||||||
|
|
||||||
|
|
||||||
class PatchEmbed(nn.Module):
|
|
||||||
"""Image to Patch Embedding
|
|
||||||
Args:
|
|
||||||
patch_size (int): Patch token size. Default: 4.
|
|
||||||
in_chans (int): Number of input image channels. Default: 3.
|
|
||||||
embed_dim (int): Number of linear projection output channels. Default: 96.
|
|
||||||
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
|
||||||
super().__init__()
|
|
||||||
patch_size = to_2tuple(patch_size)
|
|
||||||
self.patch_size = patch_size
|
|
||||||
|
|
||||||
self.in_chans = in_chans
|
|
||||||
self.embed_dim = embed_dim
|
|
||||||
|
|
||||||
self.proj = nn.Conv2d(
|
|
||||||
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
|
|
||||||
)
|
|
||||||
if norm_layer is not None:
|
|
||||||
self.norm = norm_layer(embed_dim)
|
|
||||||
else:
|
|
||||||
self.norm = None
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
"""Forward function."""
|
|
||||||
# padding
|
|
||||||
_, _, H, W = x.size()
|
|
||||||
if W % self.patch_size[1] != 0:
|
|
||||||
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
|
||||||
if H % self.patch_size[0] != 0:
|
|
||||||
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
|
||||||
|
|
||||||
x = self.proj(x) # B C Wh Ww
|
|
||||||
if self.norm is not None:
|
|
||||||
Wh, Ww = x.size(2), x.size(3)
|
|
||||||
x = x.flatten(2).transpose(1, 2)
|
|
||||||
x = self.norm(x)
|
|
||||||
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class SwinTransformer(nn.Module):
|
|
||||||
"""Swin Transformer backbone.
|
|
||||||
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
|
||||||
https://arxiv.org/pdf/2103.14030
|
|
||||||
Args:
|
|
||||||
pretrain_img_size (int): Input image size for training the pretrained model,
|
|
||||||
used in absolute postion embedding. Default 224.
|
|
||||||
patch_size (int | tuple(int)): Patch size. Default: 4.
|
|
||||||
in_chans (int): Number of input image channels. Default: 3.
|
|
||||||
embed_dim (int): Number of linear projection output channels. Default: 96.
|
|
||||||
depths (tuple[int]): Depths of each Swin Transformer stage.
|
|
||||||
num_heads (tuple[int]): Number of attention head of each stage.
|
|
||||||
window_size (int): Window size. Default: 7.
|
|
||||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
|
||||||
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
|
||||||
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
|
||||||
drop_rate (float): Dropout rate.
|
|
||||||
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
|
||||||
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
|
||||||
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
|
||||||
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
|
||||||
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
|
||||||
out_indices (Sequence[int]): Output from which stages.
|
|
||||||
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
|
||||||
-1 means not freezing any parameters.
|
|
||||||
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
|
||||||
dilation (bool): if True, the output size if 16x downsample, ow 32x downsample.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
pretrain_img_size=224,
|
|
||||||
patch_size=4,
|
|
||||||
in_chans=3,
|
|
||||||
embed_dim=96,
|
|
||||||
depths=[2, 2, 6, 2],
|
|
||||||
num_heads=[3, 6, 12, 24],
|
|
||||||
window_size=7,
|
|
||||||
mlp_ratio=4.0,
|
|
||||||
qkv_bias=True,
|
|
||||||
qk_scale=None,
|
|
||||||
drop_rate=0.0,
|
|
||||||
attn_drop_rate=0.0,
|
|
||||||
drop_path_rate=0.2,
|
|
||||||
norm_layer=nn.LayerNorm,
|
|
||||||
ape=False,
|
|
||||||
patch_norm=True,
|
|
||||||
out_indices=(0, 1, 2, 3),
|
|
||||||
frozen_stages=-1,
|
|
||||||
dilation=False,
|
|
||||||
use_checkpoint=False,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.pretrain_img_size = pretrain_img_size
|
|
||||||
self.num_layers = len(depths)
|
|
||||||
self.embed_dim = embed_dim
|
|
||||||
self.ape = ape
|
|
||||||
self.patch_norm = patch_norm
|
|
||||||
self.out_indices = out_indices
|
|
||||||
self.frozen_stages = frozen_stages
|
|
||||||
self.dilation = dilation
|
|
||||||
|
|
||||||
# if use_checkpoint:
|
|
||||||
# print("use_checkpoint!!!!!!!!!!!!!!!!!!!!!!!!")
|
|
||||||
|
|
||||||
# split image into non-overlapping patches
|
|
||||||
self.patch_embed = PatchEmbed(
|
|
||||||
patch_size=patch_size,
|
|
||||||
in_chans=in_chans,
|
|
||||||
embed_dim=embed_dim,
|
|
||||||
norm_layer=norm_layer if self.patch_norm else None,
|
|
||||||
)
|
|
||||||
|
|
||||||
# absolute position embedding
|
|
||||||
if self.ape:
|
|
||||||
pretrain_img_size = to_2tuple(pretrain_img_size)
|
|
||||||
patch_size = to_2tuple(patch_size)
|
|
||||||
patches_resolution = [
|
|
||||||
pretrain_img_size[0] // patch_size[0],
|
|
||||||
pretrain_img_size[1] // patch_size[1],
|
|
||||||
]
|
|
||||||
|
|
||||||
self.absolute_pos_embed = nn.Parameter(
|
|
||||||
torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
|
|
||||||
)
|
|
||||||
trunc_normal_(self.absolute_pos_embed, std=0.02)
|
|
||||||
|
|
||||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
||||||
|
|
||||||
# stochastic depth
|
|
||||||
dpr = [
|
|
||||||
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
|
||||||
] # stochastic depth decay rule
|
|
||||||
|
|
||||||
# build layers
|
|
||||||
self.layers = nn.ModuleList()
|
|
||||||
# prepare downsample list
|
|
||||||
downsamplelist = [PatchMerging for i in range(self.num_layers)]
|
|
||||||
downsamplelist[-1] = None
|
|
||||||
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
|
|
||||||
if self.dilation:
|
|
||||||
downsamplelist[-2] = None
|
|
||||||
num_features[-1] = int(embed_dim * 2 ** (self.num_layers - 1)) // 2
|
|
||||||
for i_layer in range(self.num_layers):
|
|
||||||
layer = BasicLayer(
|
|
||||||
# dim=int(embed_dim * 2 ** i_layer),
|
|
||||||
dim=num_features[i_layer],
|
|
||||||
depth=depths[i_layer],
|
|
||||||
num_heads=num_heads[i_layer],
|
|
||||||
window_size=window_size,
|
|
||||||
mlp_ratio=mlp_ratio,
|
|
||||||
qkv_bias=qkv_bias,
|
|
||||||
qk_scale=qk_scale,
|
|
||||||
drop=drop_rate,
|
|
||||||
attn_drop=attn_drop_rate,
|
|
||||||
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
|
|
||||||
norm_layer=norm_layer,
|
|
||||||
# downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
|
||||||
downsample=downsamplelist[i_layer],
|
|
||||||
use_checkpoint=use_checkpoint,
|
|
||||||
)
|
|
||||||
self.layers.append(layer)
|
|
||||||
|
|
||||||
# num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
|
||||||
self.num_features = num_features
|
|
||||||
|
|
||||||
# add a norm layer for each output
|
|
||||||
for i_layer in out_indices:
|
|
||||||
layer = norm_layer(num_features[i_layer])
|
|
||||||
layer_name = f"norm{i_layer}"
|
|
||||||
self.add_module(layer_name, layer)
|
|
||||||
|
|
||||||
self._freeze_stages()
|
|
||||||
|
|
||||||
def _freeze_stages(self):
|
|
||||||
if self.frozen_stages >= 0:
|
|
||||||
self.patch_embed.eval()
|
|
||||||
for param in self.patch_embed.parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
|
|
||||||
if self.frozen_stages >= 1 and self.ape:
|
|
||||||
self.absolute_pos_embed.requires_grad = False
|
|
||||||
|
|
||||||
if self.frozen_stages >= 2:
|
|
||||||
self.pos_drop.eval()
|
|
||||||
for i in range(0, self.frozen_stages - 1):
|
|
||||||
m = self.layers[i]
|
|
||||||
m.eval()
|
|
||||||
for param in m.parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
|
|
||||||
# def init_weights(self, pretrained=None):
|
|
||||||
# """Initialize the weights in backbone.
|
|
||||||
# Args:
|
|
||||||
# pretrained (str, optional): Path to pre-trained weights.
|
|
||||||
# Defaults to None.
|
|
||||||
# """
|
|
||||||
|
|
||||||
# def _init_weights(m):
|
|
||||||
# if isinstance(m, nn.Linear):
|
|
||||||
# trunc_normal_(m.weight, std=.02)
|
|
||||||
# if isinstance(m, nn.Linear) and m.bias is not None:
|
|
||||||
# nn.init.constant_(m.bias, 0)
|
|
||||||
# elif isinstance(m, nn.LayerNorm):
|
|
||||||
# nn.init.constant_(m.bias, 0)
|
|
||||||
# nn.init.constant_(m.weight, 1.0)
|
|
||||||
|
|
||||||
# if isinstance(pretrained, str):
|
|
||||||
# self.apply(_init_weights)
|
|
||||||
# logger = get_root_logger()
|
|
||||||
# load_checkpoint(self, pretrained, strict=False, logger=logger)
|
|
||||||
# elif pretrained is None:
|
|
||||||
# self.apply(_init_weights)
|
|
||||||
# else:
|
|
||||||
# raise TypeError('pretrained must be a str or None')
|
|
||||||
|
|
||||||
def forward_raw(self, x):
|
|
||||||
"""Forward function."""
|
|
||||||
x = self.patch_embed(x)
|
|
||||||
|
|
||||||
Wh, Ww = x.size(2), x.size(3)
|
|
||||||
if self.ape:
|
|
||||||
# interpolate the position embedding to the corresponding size
|
|
||||||
absolute_pos_embed = F.interpolate(
|
|
||||||
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
|
||||||
)
|
|
||||||
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
|
||||||
else:
|
|
||||||
x = x.flatten(2).transpose(1, 2)
|
|
||||||
x = self.pos_drop(x)
|
|
||||||
|
|
||||||
outs = []
|
|
||||||
for i in range(self.num_layers):
|
|
||||||
layer = self.layers[i]
|
|
||||||
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
|
|
||||||
if i in self.out_indices:
|
|
||||||
norm_layer = getattr(self, f"norm{i}")
|
|
||||||
x_out = norm_layer(x_out)
|
|
||||||
|
|
||||||
out = (
|
|
||||||
x_out.view(-1, H, W, self.num_features[i])
|
|
||||||
.permute(0, 3, 1, 2)
|
|
||||||
.contiguous()
|
|
||||||
)
|
|
||||||
outs.append(out)
|
|
||||||
# in:
|
|
||||||
# torch.Size([2, 3, 1024, 1024])
|
|
||||||
# outs:
|
|
||||||
# [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
|
|
||||||
# torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
|
|
||||||
return tuple(outs)
|
|
||||||
|
|
||||||
def forward(self, tensor_list: NestedTensor):
|
|
||||||
x = tensor_list.tensors
|
|
||||||
|
|
||||||
"""Forward function."""
|
|
||||||
x = self.patch_embed(x)
|
|
||||||
|
|
||||||
Wh, Ww = x.size(2), x.size(3)
|
|
||||||
if self.ape:
|
|
||||||
# interpolate the position embedding to the corresponding size
|
|
||||||
absolute_pos_embed = F.interpolate(
|
|
||||||
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
|
||||||
)
|
|
||||||
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
|
||||||
else:
|
|
||||||
x = x.flatten(2).transpose(1, 2)
|
|
||||||
x = self.pos_drop(x)
|
|
||||||
|
|
||||||
outs = []
|
|
||||||
for i in range(self.num_layers):
|
|
||||||
layer = self.layers[i]
|
|
||||||
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
|
||||||
|
|
||||||
if i in self.out_indices:
|
|
||||||
norm_layer = getattr(self, f"norm{i}")
|
|
||||||
x_out = norm_layer(x_out)
|
|
||||||
|
|
||||||
out = (
|
|
||||||
x_out.view(-1, H, W, self.num_features[i])
|
|
||||||
.permute(0, 3, 1, 2)
|
|
||||||
.contiguous()
|
|
||||||
)
|
|
||||||
outs.append(out)
|
|
||||||
# in:
|
|
||||||
# torch.Size([2, 3, 1024, 1024])
|
|
||||||
# out:
|
|
||||||
# [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
|
|
||||||
# torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
|
|
||||||
|
|
||||||
# collect for nesttensors
|
|
||||||
outs_dict = {}
|
|
||||||
for idx, out_i in enumerate(outs):
|
|
||||||
m = tensor_list.mask
|
|
||||||
assert m is not None
|
|
||||||
mask = F.interpolate(m[None].float(), size=out_i.shape[-2:]).to(torch.bool)[
|
|
||||||
0
|
|
||||||
]
|
|
||||||
outs_dict[idx] = NestedTensor(out_i, mask)
|
|
||||||
|
|
||||||
return outs_dict
|
|
||||||
|
|
||||||
def train(self, mode=True):
|
|
||||||
"""Convert the model into training mode while keep layers freezed."""
|
|
||||||
super(SwinTransformer, self).train(mode)
|
|
||||||
self._freeze_stages()
|
|
||||||
|
|
||||||
|
|
||||||
def build_swin_transformer(modelname, pretrain_img_size, **kw):
|
|
||||||
assert modelname in [
|
|
||||||
"swin_T_224_1k",
|
|
||||||
"swin_B_224_22k",
|
|
||||||
"swin_B_384_22k",
|
|
||||||
"swin_L_224_22k",
|
|
||||||
"swin_L_384_22k",
|
|
||||||
]
|
|
||||||
|
|
||||||
model_para_dict = {
|
|
||||||
"swin_T_224_1k": dict(
|
|
||||||
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7
|
|
||||||
),
|
|
||||||
"swin_B_224_22k": dict(
|
|
||||||
embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7
|
|
||||||
),
|
|
||||||
"swin_B_384_22k": dict(
|
|
||||||
embed_dim=128,
|
|
||||||
depths=[2, 2, 18, 2],
|
|
||||||
num_heads=[4, 8, 16, 32],
|
|
||||||
window_size=12,
|
|
||||||
),
|
|
||||||
"swin_L_224_22k": dict(
|
|
||||||
embed_dim=192,
|
|
||||||
depths=[2, 2, 18, 2],
|
|
||||||
num_heads=[6, 12, 24, 48],
|
|
||||||
window_size=7,
|
|
||||||
),
|
|
||||||
"swin_L_384_22k": dict(
|
|
||||||
embed_dim=192,
|
|
||||||
depths=[2, 2, 18, 2],
|
|
||||||
num_heads=[6, 12, 24, 48],
|
|
||||||
window_size=12,
|
|
||||||
),
|
|
||||||
}
|
|
||||||
kw_cgf = model_para_dict[modelname]
|
|
||||||
kw_cgf.update(kw)
|
|
||||||
model = SwinTransformer(pretrain_img_size=pretrain_img_size, **kw_cgf)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
model = build_swin_transformer("swin_L_384_22k", 384, dilation=True)
|
|
||||||
x = torch.rand(2, 3, 1024, 1024)
|
|
||||||
y = model.forward_raw(x)
|
|
||||||
import ipdb
|
|
||||||
|
|
||||||
ipdb.set_trace()
|
|
||||||
x = torch.rand(2, 3, 384, 384)
|
|
||||||
y = model.forward_raw(x)
|
|
@ -1,295 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import nn
|
|
||||||
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
|
|
||||||
|
|
||||||
|
|
||||||
class BertModelWarper(nn.Module):
|
|
||||||
def __init__(self, bert_model):
|
|
||||||
super().__init__()
|
|
||||||
# self.bert = bert_modelc
|
|
||||||
|
|
||||||
self.config = bert_model.config
|
|
||||||
self.embeddings = bert_model.embeddings
|
|
||||||
self.encoder = bert_model.encoder
|
|
||||||
self.pooler = bert_model.pooler
|
|
||||||
|
|
||||||
self.get_extended_attention_mask = bert_model.get_extended_attention_mask
|
|
||||||
self.invert_attention_mask = bert_model.invert_attention_mask
|
|
||||||
self.get_head_mask = bert_model.get_head_mask
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
input_ids=None,
|
|
||||||
attention_mask=None,
|
|
||||||
token_type_ids=None,
|
|
||||||
position_ids=None,
|
|
||||||
head_mask=None,
|
|
||||||
inputs_embeds=None,
|
|
||||||
encoder_hidden_states=None,
|
|
||||||
encoder_attention_mask=None,
|
|
||||||
past_key_values=None,
|
|
||||||
use_cache=None,
|
|
||||||
output_attentions=None,
|
|
||||||
output_hidden_states=None,
|
|
||||||
return_dict=None,
|
|
||||||
):
|
|
||||||
r"""
|
|
||||||
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
|
||||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
|
||||||
the model is configured as a decoder.
|
|
||||||
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
||||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
|
||||||
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
|
||||||
|
|
||||||
- 1 for tokens that are **not masked**,
|
|
||||||
- 0 for tokens that are **masked**.
|
|
||||||
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
||||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
|
||||||
|
|
||||||
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
|
||||||
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
|
||||||
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
|
||||||
use_cache (:obj:`bool`, `optional`):
|
|
||||||
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
|
||||||
decoding (see :obj:`past_key_values`).
|
|
||||||
"""
|
|
||||||
output_attentions = (
|
|
||||||
output_attentions
|
|
||||||
if output_attentions is not None
|
|
||||||
else self.config.output_attentions
|
|
||||||
)
|
|
||||||
output_hidden_states = (
|
|
||||||
output_hidden_states
|
|
||||||
if output_hidden_states is not None
|
|
||||||
else self.config.output_hidden_states
|
|
||||||
)
|
|
||||||
return_dict = (
|
|
||||||
return_dict if return_dict is not None else self.config.use_return_dict
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.config.is_decoder:
|
|
||||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
||||||
else:
|
|
||||||
use_cache = False
|
|
||||||
|
|
||||||
if input_ids is not None and inputs_embeds is not None:
|
|
||||||
raise ValueError(
|
|
||||||
"You cannot specify both input_ids and inputs_embeds at the same time"
|
|
||||||
)
|
|
||||||
elif input_ids is not None:
|
|
||||||
input_shape = input_ids.size()
|
|
||||||
batch_size, seq_length = input_shape
|
|
||||||
elif inputs_embeds is not None:
|
|
||||||
input_shape = inputs_embeds.size()[:-1]
|
|
||||||
batch_size, seq_length = input_shape
|
|
||||||
else:
|
|
||||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
||||||
|
|
||||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
||||||
|
|
||||||
# past_key_values_length
|
|
||||||
past_key_values_length = (
|
|
||||||
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
|
||||||
)
|
|
||||||
|
|
||||||
if attention_mask is None:
|
|
||||||
attention_mask = torch.ones(
|
|
||||||
((batch_size, seq_length + past_key_values_length)), device=device
|
|
||||||
)
|
|
||||||
if token_type_ids is None:
|
|
||||||
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
|
||||||
|
|
||||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
|
||||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
|
||||||
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
|
||||||
attention_mask, input_shape, device
|
|
||||||
)
|
|
||||||
|
|
||||||
# If a 2D or 3D attention mask is provided for the cross-attention
|
|
||||||
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
|
||||||
if self.config.is_decoder and encoder_hidden_states is not None:
|
|
||||||
(
|
|
||||||
encoder_batch_size,
|
|
||||||
encoder_sequence_length,
|
|
||||||
_,
|
|
||||||
) = encoder_hidden_states.size()
|
|
||||||
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
|
||||||
if encoder_attention_mask is None:
|
|
||||||
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
|
||||||
encoder_extended_attention_mask = self.invert_attention_mask(
|
|
||||||
encoder_attention_mask
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
encoder_extended_attention_mask = None
|
|
||||||
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
|
|
||||||
# Prepare head mask if needed
|
|
||||||
# 1.0 in head_mask indicate we keep the head
|
|
||||||
# attention_probs has shape bsz x n_heads x N x N
|
|
||||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
|
||||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
|
||||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
|
||||||
|
|
||||||
embedding_output = self.embeddings(
|
|
||||||
input_ids=input_ids,
|
|
||||||
position_ids=position_ids,
|
|
||||||
token_type_ids=token_type_ids,
|
|
||||||
inputs_embeds=inputs_embeds,
|
|
||||||
past_key_values_length=past_key_values_length,
|
|
||||||
)
|
|
||||||
|
|
||||||
encoder_outputs = self.encoder(
|
|
||||||
embedding_output,
|
|
||||||
attention_mask=extended_attention_mask,
|
|
||||||
head_mask=head_mask,
|
|
||||||
encoder_hidden_states=encoder_hidden_states,
|
|
||||||
encoder_attention_mask=encoder_extended_attention_mask,
|
|
||||||
past_key_values=past_key_values,
|
|
||||||
use_cache=use_cache,
|
|
||||||
output_attentions=output_attentions,
|
|
||||||
output_hidden_states=output_hidden_states,
|
|
||||||
return_dict=return_dict,
|
|
||||||
)
|
|
||||||
sequence_output = encoder_outputs[0]
|
|
||||||
pooled_output = (
|
|
||||||
self.pooler(sequence_output) if self.pooler is not None else None
|
|
||||||
)
|
|
||||||
|
|
||||||
if not return_dict:
|
|
||||||
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
|
||||||
|
|
||||||
return BaseModelOutputWithPoolingAndCrossAttentions(
|
|
||||||
last_hidden_state=sequence_output,
|
|
||||||
pooler_output=pooled_output,
|
|
||||||
past_key_values=encoder_outputs.past_key_values,
|
|
||||||
hidden_states=encoder_outputs.hidden_states,
|
|
||||||
attentions=encoder_outputs.attentions,
|
|
||||||
cross_attentions=encoder_outputs.cross_attentions,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class TextEncoderShell(nn.Module):
|
|
||||||
def __init__(self, text_encoder):
|
|
||||||
super().__init__()
|
|
||||||
self.text_encoder = text_encoder
|
|
||||||
self.config = self.text_encoder.config
|
|
||||||
|
|
||||||
def forward(self, **kw):
|
|
||||||
# feed into text encoder
|
|
||||||
return self.text_encoder(**kw)
|
|
||||||
|
|
||||||
|
|
||||||
def generate_masks_with_special_tokens(tokenized, special_tokens_list, tokenizer):
|
|
||||||
"""Generate attention mask between each pair of special tokens
|
|
||||||
Args:
|
|
||||||
input_ids (torch.Tensor): input ids. Shape: [bs, num_token]
|
|
||||||
special_tokens_mask (list): special tokens mask.
|
|
||||||
Returns:
|
|
||||||
torch.Tensor: attention mask between each special tokens.
|
|
||||||
"""
|
|
||||||
input_ids = tokenized["input_ids"]
|
|
||||||
bs, num_token = input_ids.shape
|
|
||||||
# special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens
|
|
||||||
special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool()
|
|
||||||
for special_token in special_tokens_list:
|
|
||||||
special_tokens_mask |= input_ids == special_token
|
|
||||||
|
|
||||||
# idxs: each row is a list of indices of special tokens
|
|
||||||
idxs = torch.nonzero(special_tokens_mask)
|
|
||||||
|
|
||||||
# generate attention mask and positional ids
|
|
||||||
attention_mask = (
|
|
||||||
torch.eye(num_token, device=input_ids.device)
|
|
||||||
.bool()
|
|
||||||
.unsqueeze(0)
|
|
||||||
.repeat(bs, 1, 1)
|
|
||||||
)
|
|
||||||
position_ids = torch.zeros((bs, num_token), device=input_ids.device)
|
|
||||||
previous_col = 0
|
|
||||||
for i in range(idxs.shape[0]):
|
|
||||||
row, col = idxs[i]
|
|
||||||
if (col == 0) or (col == num_token - 1):
|
|
||||||
attention_mask[row, col, col] = True
|
|
||||||
position_ids[row, col] = 0
|
|
||||||
else:
|
|
||||||
attention_mask[
|
|
||||||
row, previous_col + 1 : col + 1, previous_col + 1 : col + 1
|
|
||||||
] = True
|
|
||||||
position_ids[row, previous_col + 1 : col + 1] = torch.arange(
|
|
||||||
0, col - previous_col, device=input_ids.device
|
|
||||||
)
|
|
||||||
|
|
||||||
previous_col = col
|
|
||||||
|
|
||||||
# # padding mask
|
|
||||||
# padding_mask = tokenized['attention_mask']
|
|
||||||
# attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool()
|
|
||||||
|
|
||||||
return attention_mask, position_ids.to(torch.long)
|
|
||||||
|
|
||||||
|
|
||||||
def generate_masks_with_special_tokens_and_transfer_map(
|
|
||||||
tokenized, special_tokens_list, tokenizer
|
|
||||||
):
|
|
||||||
"""Generate attention mask between each pair of special tokens
|
|
||||||
Args:
|
|
||||||
input_ids (torch.Tensor): input ids. Shape: [bs, num_token]
|
|
||||||
special_tokens_mask (list): special tokens mask.
|
|
||||||
Returns:
|
|
||||||
torch.Tensor: attention mask between each special tokens.
|
|
||||||
"""
|
|
||||||
input_ids = tokenized["input_ids"]
|
|
||||||
bs, num_token = input_ids.shape
|
|
||||||
# special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens
|
|
||||||
special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool()
|
|
||||||
for special_token in special_tokens_list:
|
|
||||||
special_tokens_mask |= input_ids == special_token
|
|
||||||
|
|
||||||
# idxs: each row is a list of indices of special tokens
|
|
||||||
idxs = torch.nonzero(special_tokens_mask)
|
|
||||||
|
|
||||||
# generate attention mask and positional ids
|
|
||||||
attention_mask = (
|
|
||||||
torch.eye(num_token, device=input_ids.device)
|
|
||||||
.bool()
|
|
||||||
.unsqueeze(0)
|
|
||||||
.repeat(bs, 1, 1)
|
|
||||||
)
|
|
||||||
position_ids = torch.zeros((bs, num_token), device=input_ids.device)
|
|
||||||
cate_to_token_mask_list = [[] for _ in range(bs)]
|
|
||||||
previous_col = 0
|
|
||||||
for i in range(idxs.shape[0]):
|
|
||||||
row, col = idxs[i]
|
|
||||||
if (col == 0) or (col == num_token - 1):
|
|
||||||
attention_mask[row, col, col] = True
|
|
||||||
position_ids[row, col] = 0
|
|
||||||
else:
|
|
||||||
attention_mask[
|
|
||||||
row, previous_col + 1 : col + 1, previous_col + 1 : col + 1
|
|
||||||
] = True
|
|
||||||
position_ids[row, previous_col + 1 : col + 1] = torch.arange(
|
|
||||||
0, col - previous_col, device=input_ids.device
|
|
||||||
)
|
|
||||||
c2t_maski = torch.zeros((num_token), device=input_ids.device).bool()
|
|
||||||
c2t_maski[previous_col + 1 : col] = True
|
|
||||||
cate_to_token_mask_list[row].append(c2t_maski)
|
|
||||||
previous_col = col
|
|
||||||
|
|
||||||
cate_to_token_mask_list = [
|
|
||||||
torch.stack(cate_to_token_mask_listi, dim=0)
|
|
||||||
for cate_to_token_mask_listi in cate_to_token_mask_list
|
|
||||||
]
|
|
||||||
|
|
||||||
# # padding mask
|
|
||||||
# padding_mask = tokenized['attention_mask']
|
|
||||||
# attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool()
|
|
||||||
|
|
||||||
return attention_mask, position_ids.to(torch.long), cate_to_token_mask_list
|
|
@ -1,64 +0,0 @@
|
|||||||
/*!
|
|
||||||
**************************************************************************************************
|
|
||||||
* Deformable DETR
|
|
||||||
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
|
||||||
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
**************************************************************************************************
|
|
||||||
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
|
||||||
**************************************************************************************************
|
|
||||||
*/
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#include "ms_deform_attn_cpu.h"
|
|
||||||
|
|
||||||
#ifdef WITH_CUDA
|
|
||||||
#include "ms_deform_attn_cuda.h"
|
|
||||||
#endif
|
|
||||||
|
|
||||||
namespace groundingdino {
|
|
||||||
|
|
||||||
at::Tensor
|
|
||||||
ms_deform_attn_forward(
|
|
||||||
const at::Tensor &value,
|
|
||||||
const at::Tensor &spatial_shapes,
|
|
||||||
const at::Tensor &level_start_index,
|
|
||||||
const at::Tensor &sampling_loc,
|
|
||||||
const at::Tensor &attn_weight,
|
|
||||||
const int im2col_step)
|
|
||||||
{
|
|
||||||
if (value.type().is_cuda())
|
|
||||||
{
|
|
||||||
#ifdef WITH_CUDA
|
|
||||||
return ms_deform_attn_cuda_forward(
|
|
||||||
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step);
|
|
||||||
#else
|
|
||||||
AT_ERROR("Not compiled with GPU support");
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
AT_ERROR("Not implemented on the CPU");
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<at::Tensor>
|
|
||||||
ms_deform_attn_backward(
|
|
||||||
const at::Tensor &value,
|
|
||||||
const at::Tensor &spatial_shapes,
|
|
||||||
const at::Tensor &level_start_index,
|
|
||||||
const at::Tensor &sampling_loc,
|
|
||||||
const at::Tensor &attn_weight,
|
|
||||||
const at::Tensor &grad_output,
|
|
||||||
const int im2col_step)
|
|
||||||
{
|
|
||||||
if (value.type().is_cuda())
|
|
||||||
{
|
|
||||||
#ifdef WITH_CUDA
|
|
||||||
return ms_deform_attn_cuda_backward(
|
|
||||||
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step);
|
|
||||||
#else
|
|
||||||
AT_ERROR("Not compiled with GPU support");
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
AT_ERROR("Not implemented on the CPU");
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace groundingdino
|
|
@ -1,43 +0,0 @@
|
|||||||
/*!
|
|
||||||
**************************************************************************************************
|
|
||||||
* Deformable DETR
|
|
||||||
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
|
||||||
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
**************************************************************************************************
|
|
||||||
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
|
||||||
**************************************************************************************************
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
#include <ATen/ATen.h>
|
|
||||||
#include <ATen/cuda/CUDAContext.h>
|
|
||||||
|
|
||||||
namespace groundingdino {
|
|
||||||
|
|
||||||
at::Tensor
|
|
||||||
ms_deform_attn_cpu_forward(
|
|
||||||
const at::Tensor &value,
|
|
||||||
const at::Tensor &spatial_shapes,
|
|
||||||
const at::Tensor &level_start_index,
|
|
||||||
const at::Tensor &sampling_loc,
|
|
||||||
const at::Tensor &attn_weight,
|
|
||||||
const int im2col_step)
|
|
||||||
{
|
|
||||||
AT_ERROR("Not implement on cpu");
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<at::Tensor>
|
|
||||||
ms_deform_attn_cpu_backward(
|
|
||||||
const at::Tensor &value,
|
|
||||||
const at::Tensor &spatial_shapes,
|
|
||||||
const at::Tensor &level_start_index,
|
|
||||||
const at::Tensor &sampling_loc,
|
|
||||||
const at::Tensor &attn_weight,
|
|
||||||
const at::Tensor &grad_output,
|
|
||||||
const int im2col_step)
|
|
||||||
{
|
|
||||||
AT_ERROR("Not implement on cpu");
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace groundingdino
|
|
@ -1,35 +0,0 @@
|
|||||||
/*!
|
|
||||||
**************************************************************************************************
|
|
||||||
* Deformable DETR
|
|
||||||
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
|
||||||
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
**************************************************************************************************
|
|
||||||
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
|
||||||
**************************************************************************************************
|
|
||||||
*/
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
#include <torch/extension.h>
|
|
||||||
|
|
||||||
namespace groundingdino {
|
|
||||||
|
|
||||||
at::Tensor
|
|
||||||
ms_deform_attn_cpu_forward(
|
|
||||||
const at::Tensor &value,
|
|
||||||
const at::Tensor &spatial_shapes,
|
|
||||||
const at::Tensor &level_start_index,
|
|
||||||
const at::Tensor &sampling_loc,
|
|
||||||
const at::Tensor &attn_weight,
|
|
||||||
const int im2col_step);
|
|
||||||
|
|
||||||
std::vector<at::Tensor>
|
|
||||||
ms_deform_attn_cpu_backward(
|
|
||||||
const at::Tensor &value,
|
|
||||||
const at::Tensor &spatial_shapes,
|
|
||||||
const at::Tensor &level_start_index,
|
|
||||||
const at::Tensor &sampling_loc,
|
|
||||||
const at::Tensor &attn_weight,
|
|
||||||
const at::Tensor &grad_output,
|
|
||||||
const int im2col_step);
|
|
||||||
|
|
||||||
} // namespace groundingdino
|
|
@ -1,156 +0,0 @@
|
|||||||
/*!
|
|
||||||
**************************************************************************************************
|
|
||||||
* Deformable DETR
|
|
||||||
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
|
||||||
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
**************************************************************************************************
|
|
||||||
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
|
||||||
**************************************************************************************************
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include "ms_deform_im2col_cuda.cuh"
|
|
||||||
|
|
||||||
#include <ATen/ATen.h>
|
|
||||||
#include <ATen/cuda/CUDAContext.h>
|
|
||||||
#include <cuda.h>
|
|
||||||
#include <cuda_runtime.h>
|
|
||||||
|
|
||||||
namespace groundingdino {
|
|
||||||
|
|
||||||
at::Tensor ms_deform_attn_cuda_forward(
|
|
||||||
const at::Tensor &value,
|
|
||||||
const at::Tensor &spatial_shapes,
|
|
||||||
const at::Tensor &level_start_index,
|
|
||||||
const at::Tensor &sampling_loc,
|
|
||||||
const at::Tensor &attn_weight,
|
|
||||||
const int im2col_step)
|
|
||||||
{
|
|
||||||
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
|
||||||
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
|
||||||
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
|
||||||
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
|
||||||
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
|
||||||
|
|
||||||
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
|
||||||
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
|
||||||
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
|
||||||
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
|
||||||
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
|
||||||
|
|
||||||
const int batch = value.size(0);
|
|
||||||
const int spatial_size = value.size(1);
|
|
||||||
const int num_heads = value.size(2);
|
|
||||||
const int channels = value.size(3);
|
|
||||||
|
|
||||||
const int num_levels = spatial_shapes.size(0);
|
|
||||||
|
|
||||||
const int num_query = sampling_loc.size(1);
|
|
||||||
const int num_point = sampling_loc.size(4);
|
|
||||||
|
|
||||||
const int im2col_step_ = std::min(batch, im2col_step);
|
|
||||||
|
|
||||||
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
|
||||||
|
|
||||||
auto output = at::zeros({batch, num_query, num_heads, channels}, value.options());
|
|
||||||
|
|
||||||
const int batch_n = im2col_step_;
|
|
||||||
auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
|
||||||
auto per_value_size = spatial_size * num_heads * channels;
|
|
||||||
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
|
||||||
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
|
||||||
for (int n = 0; n < batch/im2col_step_; ++n)
|
|
||||||
{
|
|
||||||
auto columns = output_n.select(0, n);
|
|
||||||
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] {
|
|
||||||
ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
|
|
||||||
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
|
||||||
spatial_shapes.data<int64_t>(),
|
|
||||||
level_start_index.data<int64_t>(),
|
|
||||||
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
|
||||||
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
|
||||||
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
|
||||||
columns.data<scalar_t>());
|
|
||||||
|
|
||||||
}));
|
|
||||||
}
|
|
||||||
|
|
||||||
output = output.view({batch, num_query, num_heads*channels});
|
|
||||||
|
|
||||||
return output;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
|
||||||
const at::Tensor &value,
|
|
||||||
const at::Tensor &spatial_shapes,
|
|
||||||
const at::Tensor &level_start_index,
|
|
||||||
const at::Tensor &sampling_loc,
|
|
||||||
const at::Tensor &attn_weight,
|
|
||||||
const at::Tensor &grad_output,
|
|
||||||
const int im2col_step)
|
|
||||||
{
|
|
||||||
|
|
||||||
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
|
||||||
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
|
||||||
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
|
||||||
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
|
||||||
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
|
||||||
AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous");
|
|
||||||
|
|
||||||
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
|
||||||
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
|
||||||
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
|
||||||
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
|
||||||
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
|
||||||
AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor");
|
|
||||||
|
|
||||||
const int batch = value.size(0);
|
|
||||||
const int spatial_size = value.size(1);
|
|
||||||
const int num_heads = value.size(2);
|
|
||||||
const int channels = value.size(3);
|
|
||||||
|
|
||||||
const int num_levels = spatial_shapes.size(0);
|
|
||||||
|
|
||||||
const int num_query = sampling_loc.size(1);
|
|
||||||
const int num_point = sampling_loc.size(4);
|
|
||||||
|
|
||||||
const int im2col_step_ = std::min(batch, im2col_step);
|
|
||||||
|
|
||||||
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
|
||||||
|
|
||||||
auto grad_value = at::zeros_like(value);
|
|
||||||
auto grad_sampling_loc = at::zeros_like(sampling_loc);
|
|
||||||
auto grad_attn_weight = at::zeros_like(attn_weight);
|
|
||||||
|
|
||||||
const int batch_n = im2col_step_;
|
|
||||||
auto per_value_size = spatial_size * num_heads * channels;
|
|
||||||
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
|
||||||
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
|
||||||
auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
|
||||||
|
|
||||||
for (int n = 0; n < batch/im2col_step_; ++n)
|
|
||||||
{
|
|
||||||
auto grad_output_g = grad_output_n.select(0, n);
|
|
||||||
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] {
|
|
||||||
ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(),
|
|
||||||
grad_output_g.data<scalar_t>(),
|
|
||||||
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
|
||||||
spatial_shapes.data<int64_t>(),
|
|
||||||
level_start_index.data<int64_t>(),
|
|
||||||
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
|
||||||
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
|
||||||
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
|
||||||
grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
|
||||||
grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
|
||||||
grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size);
|
|
||||||
|
|
||||||
}));
|
|
||||||
}
|
|
||||||
|
|
||||||
return {
|
|
||||||
grad_value, grad_sampling_loc, grad_attn_weight
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace groundingdino
|
|
@ -1,33 +0,0 @@
|
|||||||
/*!
|
|
||||||
**************************************************************************************************
|
|
||||||
* Deformable DETR
|
|
||||||
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
|
||||||
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
**************************************************************************************************
|
|
||||||
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
|
||||||
**************************************************************************************************
|
|
||||||
*/
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
#include <torch/extension.h>
|
|
||||||
|
|
||||||
namespace groundingdino {
|
|
||||||
|
|
||||||
at::Tensor ms_deform_attn_cuda_forward(
|
|
||||||
const at::Tensor &value,
|
|
||||||
const at::Tensor &spatial_shapes,
|
|
||||||
const at::Tensor &level_start_index,
|
|
||||||
const at::Tensor &sampling_loc,
|
|
||||||
const at::Tensor &attn_weight,
|
|
||||||
const int im2col_step);
|
|
||||||
|
|
||||||
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
|
||||||
const at::Tensor &value,
|
|
||||||
const at::Tensor &spatial_shapes,
|
|
||||||
const at::Tensor &level_start_index,
|
|
||||||
const at::Tensor &sampling_loc,
|
|
||||||
const at::Tensor &attn_weight,
|
|
||||||
const at::Tensor &grad_output,
|
|
||||||
const int im2col_step);
|
|
||||||
|
|
||||||
} // namespace groundingdino
|
|
@ -1,7 +0,0 @@
|
|||||||
#include <cuda_runtime_api.h>
|
|
||||||
|
|
||||||
namespace groundingdino {
|
|
||||||
int get_cudart_version() {
|
|
||||||
return CUDART_VERSION;
|
|
||||||
}
|
|
||||||
} // namespace groundingdino
|
|
@ -1,58 +0,0 @@
|
|||||||
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
||||||
|
|
||||||
#include "MsDeformAttn/ms_deform_attn.h"
|
|
||||||
|
|
||||||
namespace groundingdino {
|
|
||||||
|
|
||||||
#ifdef WITH_CUDA
|
|
||||||
extern int get_cudart_version();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
std::string get_cuda_version() {
|
|
||||||
#ifdef WITH_CUDA
|
|
||||||
std::ostringstream oss;
|
|
||||||
|
|
||||||
// copied from
|
|
||||||
// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/cuda/detail/CUDAHooks.cpp#L231
|
|
||||||
auto printCudaStyleVersion = [&](int v) {
|
|
||||||
oss << (v / 1000) << "." << (v / 10 % 100);
|
|
||||||
if (v % 10 != 0) {
|
|
||||||
oss << "." << (v % 10);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
printCudaStyleVersion(get_cudart_version());
|
|
||||||
return oss.str();
|
|
||||||
#else
|
|
||||||
return std::string("not available");
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
// similar to
|
|
||||||
// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Version.cpp
|
|
||||||
std::string get_compiler_version() {
|
|
||||||
std::ostringstream ss;
|
|
||||||
#if defined(__GNUC__)
|
|
||||||
#ifndef __clang__
|
|
||||||
{ ss << "GCC " << __GNUC__ << "." << __GNUC_MINOR__; }
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(__clang_major__)
|
|
||||||
{
|
|
||||||
ss << "clang " << __clang_major__ << "." << __clang_minor__ << "."
|
|
||||||
<< __clang_patchlevel__;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(_MSC_VER)
|
|
||||||
{ ss << "MSVC " << _MSC_FULL_VER; }
|
|
||||||
#endif
|
|
||||||
return ss.str();
|
|
||||||
}
|
|
||||||
|
|
||||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
|
||||||
m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward");
|
|
||||||
m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward");
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace groundingdino
|
|
@ -1,317 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from timm.models.layers import DropPath
|
|
||||||
|
|
||||||
|
|
||||||
class FeatureResizer(nn.Module):
|
|
||||||
"""
|
|
||||||
This class takes as input a set of embeddings of dimension C1 and outputs a set of
|
|
||||||
embedding of dimension C2, after a linear transformation, dropout and normalization (LN).
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True):
|
|
||||||
super().__init__()
|
|
||||||
self.do_ln = do_ln
|
|
||||||
# Object feature encoding
|
|
||||||
self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True)
|
|
||||||
self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12)
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
|
||||||
|
|
||||||
def forward(self, encoder_features):
|
|
||||||
x = self.fc(encoder_features)
|
|
||||||
if self.do_ln:
|
|
||||||
x = self.layer_norm(x)
|
|
||||||
output = self.dropout(x)
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
def l1norm(X, dim, eps=1e-8):
|
|
||||||
"""L1-normalize columns of X"""
|
|
||||||
norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps
|
|
||||||
X = torch.div(X, norm)
|
|
||||||
return X
|
|
||||||
|
|
||||||
|
|
||||||
def l2norm(X, dim, eps=1e-8):
|
|
||||||
"""L2-normalize columns of X"""
|
|
||||||
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
|
|
||||||
X = torch.div(X, norm)
|
|
||||||
return X
|
|
||||||
|
|
||||||
|
|
||||||
def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8):
|
|
||||||
"""
|
|
||||||
query: (n_context, queryL, d)
|
|
||||||
context: (n_context, sourceL, d)
|
|
||||||
"""
|
|
||||||
batch_size_q, queryL = query.size(0), query.size(1)
|
|
||||||
batch_size, sourceL = context.size(0), context.size(1)
|
|
||||||
|
|
||||||
# Get attention
|
|
||||||
# --> (batch, d, queryL)
|
|
||||||
queryT = torch.transpose(query, 1, 2)
|
|
||||||
|
|
||||||
# (batch, sourceL, d)(batch, d, queryL)
|
|
||||||
# --> (batch, sourceL, queryL)
|
|
||||||
attn = torch.bmm(context, queryT)
|
|
||||||
if raw_feature_norm == "softmax":
|
|
||||||
# --> (batch*sourceL, queryL)
|
|
||||||
attn = attn.view(batch_size * sourceL, queryL)
|
|
||||||
attn = nn.Softmax()(attn)
|
|
||||||
# --> (batch, sourceL, queryL)
|
|
||||||
attn = attn.view(batch_size, sourceL, queryL)
|
|
||||||
elif raw_feature_norm == "l2norm":
|
|
||||||
attn = l2norm(attn, 2)
|
|
||||||
elif raw_feature_norm == "clipped_l2norm":
|
|
||||||
attn = nn.LeakyReLU(0.1)(attn)
|
|
||||||
attn = l2norm(attn, 2)
|
|
||||||
else:
|
|
||||||
raise ValueError("unknown first norm type:", raw_feature_norm)
|
|
||||||
# --> (batch, queryL, sourceL)
|
|
||||||
attn = torch.transpose(attn, 1, 2).contiguous()
|
|
||||||
# --> (batch*queryL, sourceL)
|
|
||||||
attn = attn.view(batch_size * queryL, sourceL)
|
|
||||||
attn = nn.Softmax()(attn * smooth)
|
|
||||||
# --> (batch, queryL, sourceL)
|
|
||||||
attn = attn.view(batch_size, queryL, sourceL)
|
|
||||||
# --> (batch, sourceL, queryL)
|
|
||||||
attnT = torch.transpose(attn, 1, 2).contiguous()
|
|
||||||
|
|
||||||
# --> (batch, d, sourceL)
|
|
||||||
contextT = torch.transpose(context, 1, 2)
|
|
||||||
# (batch x d x sourceL)(batch x sourceL x queryL)
|
|
||||||
# --> (batch, d, queryL)
|
|
||||||
weightedContext = torch.bmm(contextT, attnT)
|
|
||||||
# --> (batch, queryL, d)
|
|
||||||
weightedContext = torch.transpose(weightedContext, 1, 2)
|
|
||||||
|
|
||||||
return weightedContext, attnT
|
|
||||||
|
|
||||||
|
|
||||||
class BiMultiHeadAttention(nn.Module):
|
|
||||||
def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None):
|
|
||||||
super(BiMultiHeadAttention, self).__init__()
|
|
||||||
|
|
||||||
self.embed_dim = embed_dim
|
|
||||||
self.num_heads = num_heads
|
|
||||||
self.head_dim = embed_dim // num_heads
|
|
||||||
self.v_dim = v_dim
|
|
||||||
self.l_dim = l_dim
|
|
||||||
|
|
||||||
assert (
|
|
||||||
self.head_dim * self.num_heads == self.embed_dim
|
|
||||||
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
|
|
||||||
self.scale = self.head_dim ** (-0.5)
|
|
||||||
self.dropout = dropout
|
|
||||||
|
|
||||||
self.v_proj = nn.Linear(self.v_dim, self.embed_dim)
|
|
||||||
self.l_proj = nn.Linear(self.l_dim, self.embed_dim)
|
|
||||||
self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim)
|
|
||||||
self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim)
|
|
||||||
|
|
||||||
self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim)
|
|
||||||
self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim)
|
|
||||||
|
|
||||||
self.stable_softmax_2d = True
|
|
||||||
self.clamp_min_for_underflow = True
|
|
||||||
self.clamp_max_for_overflow = True
|
|
||||||
|
|
||||||
self._reset_parameters()
|
|
||||||
|
|
||||||
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
|
||||||
return (
|
|
||||||
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
|
||||||
.transpose(1, 2)
|
|
||||||
.contiguous()
|
|
||||||
)
|
|
||||||
|
|
||||||
def _reset_parameters(self):
|
|
||||||
nn.init.xavier_uniform_(self.v_proj.weight)
|
|
||||||
self.v_proj.bias.data.fill_(0)
|
|
||||||
nn.init.xavier_uniform_(self.l_proj.weight)
|
|
||||||
self.l_proj.bias.data.fill_(0)
|
|
||||||
nn.init.xavier_uniform_(self.values_v_proj.weight)
|
|
||||||
self.values_v_proj.bias.data.fill_(0)
|
|
||||||
nn.init.xavier_uniform_(self.values_l_proj.weight)
|
|
||||||
self.values_l_proj.bias.data.fill_(0)
|
|
||||||
nn.init.xavier_uniform_(self.out_v_proj.weight)
|
|
||||||
self.out_v_proj.bias.data.fill_(0)
|
|
||||||
nn.init.xavier_uniform_(self.out_l_proj.weight)
|
|
||||||
self.out_l_proj.bias.data.fill_(0)
|
|
||||||
|
|
||||||
def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
|
|
||||||
"""_summary_
|
|
||||||
|
|
||||||
Args:
|
|
||||||
v (_type_): bs, n_img, dim
|
|
||||||
l (_type_): bs, n_text, dim
|
|
||||||
attention_mask_v (_type_, optional): _description_. bs, n_img
|
|
||||||
attention_mask_l (_type_, optional): _description_. bs, n_text
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
_type_: _description_
|
|
||||||
"""
|
|
||||||
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
bsz, tgt_len, _ = v.size()
|
|
||||||
|
|
||||||
query_states = self.v_proj(v) * self.scale
|
|
||||||
key_states = self._shape(self.l_proj(l), -1, bsz)
|
|
||||||
value_v_states = self._shape(self.values_v_proj(v), -1, bsz)
|
|
||||||
value_l_states = self._shape(self.values_l_proj(l), -1, bsz)
|
|
||||||
|
|
||||||
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
|
||||||
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
|
||||||
key_states = key_states.view(*proj_shape)
|
|
||||||
value_v_states = value_v_states.view(*proj_shape)
|
|
||||||
value_l_states = value_l_states.view(*proj_shape)
|
|
||||||
|
|
||||||
src_len = key_states.size(1)
|
|
||||||
attn_weights = torch.bmm(
|
|
||||||
query_states, key_states.transpose(1, 2)
|
|
||||||
) # bs*nhead, nimg, ntxt
|
|
||||||
|
|
||||||
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
|
||||||
raise ValueError(
|
|
||||||
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.stable_softmax_2d:
|
|
||||||
attn_weights = attn_weights - attn_weights.max()
|
|
||||||
|
|
||||||
if self.clamp_min_for_underflow:
|
|
||||||
attn_weights = torch.clamp(
|
|
||||||
attn_weights, min=-50000
|
|
||||||
) # Do not increase -50000, data type half has quite limited range
|
|
||||||
if self.clamp_max_for_overflow:
|
|
||||||
attn_weights = torch.clamp(
|
|
||||||
attn_weights, max=50000
|
|
||||||
) # Do not increase 50000, data type half has quite limited range
|
|
||||||
|
|
||||||
attn_weights_T = attn_weights.transpose(1, 2)
|
|
||||||
attn_weights_l = (
|
|
||||||
attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[0]
|
|
||||||
)
|
|
||||||
if self.clamp_min_for_underflow:
|
|
||||||
attn_weights_l = torch.clamp(
|
|
||||||
attn_weights_l, min=-50000
|
|
||||||
) # Do not increase -50000, data type half has quite limited range
|
|
||||||
if self.clamp_max_for_overflow:
|
|
||||||
attn_weights_l = torch.clamp(
|
|
||||||
attn_weights_l, max=50000
|
|
||||||
) # Do not increase 50000, data type half has quite limited range
|
|
||||||
|
|
||||||
# mask vison for language
|
|
||||||
if attention_mask_v is not None:
|
|
||||||
attention_mask_v = (
|
|
||||||
attention_mask_v[:, None, None, :]
|
|
||||||
.repeat(1, self.num_heads, 1, 1)
|
|
||||||
.flatten(0, 1)
|
|
||||||
)
|
|
||||||
attn_weights_l.masked_fill_(attention_mask_v, float("-inf"))
|
|
||||||
|
|
||||||
attn_weights_l = attn_weights_l.softmax(dim=-1)
|
|
||||||
|
|
||||||
# mask language for vision
|
|
||||||
if attention_mask_l is not None:
|
|
||||||
attention_mask_l = (
|
|
||||||
attention_mask_l[:, None, None, :]
|
|
||||||
.repeat(1, self.num_heads, 1, 1)
|
|
||||||
.flatten(0, 1)
|
|
||||||
)
|
|
||||||
attn_weights.masked_fill_(attention_mask_l, float("-inf"))
|
|
||||||
attn_weights_v = attn_weights.softmax(dim=-1)
|
|
||||||
|
|
||||||
attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training)
|
|
||||||
attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training)
|
|
||||||
|
|
||||||
attn_output_v = torch.bmm(attn_probs_v, value_l_states)
|
|
||||||
attn_output_l = torch.bmm(attn_probs_l, value_v_states)
|
|
||||||
|
|
||||||
if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
|
||||||
raise ValueError(
|
|
||||||
f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}"
|
|
||||||
)
|
|
||||||
|
|
||||||
if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim):
|
|
||||||
raise ValueError(
|
|
||||||
f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}"
|
|
||||||
)
|
|
||||||
|
|
||||||
attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
|
||||||
attn_output_v = attn_output_v.transpose(1, 2)
|
|
||||||
attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim)
|
|
||||||
|
|
||||||
attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim)
|
|
||||||
attn_output_l = attn_output_l.transpose(1, 2)
|
|
||||||
attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim)
|
|
||||||
|
|
||||||
attn_output_v = self.out_v_proj(attn_output_v)
|
|
||||||
attn_output_l = self.out_l_proj(attn_output_l)
|
|
||||||
|
|
||||||
return attn_output_v, attn_output_l
|
|
||||||
|
|
||||||
|
|
||||||
# Bi-Direction MHA (text->image, image->text)
|
|
||||||
class BiAttentionBlock(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
v_dim,
|
|
||||||
l_dim,
|
|
||||||
embed_dim,
|
|
||||||
num_heads,
|
|
||||||
dropout=0.1,
|
|
||||||
drop_path=0.0,
|
|
||||||
init_values=1e-4,
|
|
||||||
cfg=None,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Inputs:
|
|
||||||
embed_dim - Dimensionality of input and attention feature vectors
|
|
||||||
hidden_dim - Dimensionality of hidden layer in feed-forward network
|
|
||||||
(usually 2-4x larger than embed_dim)
|
|
||||||
num_heads - Number of heads to use in the Multi-Head Attention block
|
|
||||||
dropout - Amount of dropout to apply in the feed-forward network
|
|
||||||
"""
|
|
||||||
super(BiAttentionBlock, self).__init__()
|
|
||||||
|
|
||||||
# pre layer norm
|
|
||||||
self.layer_norm_v = nn.LayerNorm(v_dim)
|
|
||||||
self.layer_norm_l = nn.LayerNorm(l_dim)
|
|
||||||
self.attn = BiMultiHeadAttention(
|
|
||||||
v_dim=v_dim,
|
|
||||||
l_dim=l_dim,
|
|
||||||
embed_dim=embed_dim,
|
|
||||||
num_heads=num_heads,
|
|
||||||
dropout=dropout,
|
|
||||||
)
|
|
||||||
|
|
||||||
# add layer scale for training stability
|
|
||||||
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
||||||
self.gamma_v = nn.Parameter(
|
|
||||||
init_values * torch.ones((v_dim)), requires_grad=True
|
|
||||||
)
|
|
||||||
self.gamma_l = nn.Parameter(
|
|
||||||
init_values * torch.ones((l_dim)), requires_grad=True
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
|
|
||||||
v = self.layer_norm_v(v)
|
|
||||||
l = self.layer_norm_l(l)
|
|
||||||
delta_v, delta_l = self.attn(
|
|
||||||
v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l
|
|
||||||
)
|
|
||||||
# v, l = v + delta_v, l + delta_l
|
|
||||||
v = v + self.drop_path(self.gamma_v * delta_v)
|
|
||||||
l = l + self.drop_path(self.gamma_l * delta_l)
|
|
||||||
return v, l
|
|
||||||
|
|
||||||
# def forward(self, v:List[torch.Tensor], l, attention_mask_v=None, attention_mask_l=None)
|
|
@ -1,407 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Conditional DETR model and criterion classes.
|
|
||||||
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Modified from DETR (https://github.com/facebookresearch/detr)
|
|
||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
|
|
||||||
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
import copy
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from torch import nn
|
|
||||||
|
|
||||||
from groundingdino.util import get_tokenlizer
|
|
||||||
from groundingdino.util.misc import (
|
|
||||||
NestedTensor,
|
|
||||||
inverse_sigmoid,
|
|
||||||
nested_tensor_from_tensor_list,
|
|
||||||
)
|
|
||||||
|
|
||||||
from ..registry import MODULE_BUILD_FUNCS
|
|
||||||
from .backbone import build_backbone
|
|
||||||
from .bertwarper import (
|
|
||||||
BertModelWarper,
|
|
||||||
generate_masks_with_special_tokens_and_transfer_map,
|
|
||||||
)
|
|
||||||
from .transformer import build_transformer
|
|
||||||
from .utils import MLP, ContrastiveEmbed
|
|
||||||
|
|
||||||
|
|
||||||
class GroundingDINO(nn.Module):
|
|
||||||
"""This is the Cross-Attention Detector module that performs object detection"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
backbone,
|
|
||||||
transformer,
|
|
||||||
num_queries,
|
|
||||||
aux_loss=False,
|
|
||||||
iter_update=False,
|
|
||||||
query_dim=2,
|
|
||||||
num_feature_levels=1,
|
|
||||||
nheads=8,
|
|
||||||
# two stage
|
|
||||||
two_stage_type="no", # ['no', 'standard']
|
|
||||||
dec_pred_bbox_embed_share=True,
|
|
||||||
two_stage_class_embed_share=True,
|
|
||||||
two_stage_bbox_embed_share=True,
|
|
||||||
num_patterns=0,
|
|
||||||
dn_number=100,
|
|
||||||
dn_box_noise_scale=0.4,
|
|
||||||
dn_label_noise_ratio=0.5,
|
|
||||||
dn_labelbook_size=100,
|
|
||||||
text_encoder_type="bert-base-uncased",
|
|
||||||
sub_sentence_present=True,
|
|
||||||
max_text_len=256,
|
|
||||||
):
|
|
||||||
"""Initializes the model.
|
|
||||||
Parameters:
|
|
||||||
backbone: torch module of the backbone to be used. See backbone.py
|
|
||||||
transformer: torch module of the transformer architecture. See transformer.py
|
|
||||||
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
|
||||||
Conditional DETR can detect in a single image. For COCO, we recommend 100 queries.
|
|
||||||
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
self.num_queries = num_queries
|
|
||||||
self.transformer = transformer
|
|
||||||
self.hidden_dim = hidden_dim = transformer.d_model
|
|
||||||
self.num_feature_levels = num_feature_levels
|
|
||||||
self.nheads = nheads
|
|
||||||
self.max_text_len = 256
|
|
||||||
self.sub_sentence_present = sub_sentence_present
|
|
||||||
|
|
||||||
# setting query dim
|
|
||||||
self.query_dim = query_dim
|
|
||||||
assert query_dim == 4
|
|
||||||
|
|
||||||
# for dn training
|
|
||||||
self.num_patterns = num_patterns
|
|
||||||
self.dn_number = dn_number
|
|
||||||
self.dn_box_noise_scale = dn_box_noise_scale
|
|
||||||
self.dn_label_noise_ratio = dn_label_noise_ratio
|
|
||||||
self.dn_labelbook_size = dn_labelbook_size
|
|
||||||
|
|
||||||
# bert
|
|
||||||
self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
|
|
||||||
self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type)
|
|
||||||
self.bert.pooler.dense.weight.requires_grad_(False)
|
|
||||||
self.bert.pooler.dense.bias.requires_grad_(False)
|
|
||||||
self.bert = BertModelWarper(bert_model=self.bert)
|
|
||||||
|
|
||||||
self.feat_map = nn.Linear(
|
|
||||||
self.bert.config.hidden_size, self.hidden_dim, bias=True
|
|
||||||
)
|
|
||||||
nn.init.constant_(self.feat_map.bias.data, 0)
|
|
||||||
nn.init.xavier_uniform_(self.feat_map.weight.data)
|
|
||||||
# freeze
|
|
||||||
|
|
||||||
# special tokens
|
|
||||||
self.specical_tokens = self.tokenizer.convert_tokens_to_ids(
|
|
||||||
["[CLS]", "[SEP]", ".", "?"]
|
|
||||||
)
|
|
||||||
|
|
||||||
# prepare input projection layers
|
|
||||||
if num_feature_levels > 1:
|
|
||||||
num_backbone_outs = len(backbone.num_channels)
|
|
||||||
input_proj_list = []
|
|
||||||
for _ in range(num_backbone_outs):
|
|
||||||
in_channels = backbone.num_channels[_]
|
|
||||||
input_proj_list.append(
|
|
||||||
nn.Sequential(
|
|
||||||
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
|
|
||||||
nn.GroupNorm(32, hidden_dim),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
for _ in range(num_feature_levels - num_backbone_outs):
|
|
||||||
input_proj_list.append(
|
|
||||||
nn.Sequential(
|
|
||||||
nn.Conv2d(
|
|
||||||
in_channels, hidden_dim, kernel_size=3, stride=2, padding=1
|
|
||||||
),
|
|
||||||
nn.GroupNorm(32, hidden_dim),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
in_channels = hidden_dim
|
|
||||||
self.input_proj = nn.ModuleList(input_proj_list)
|
|
||||||
else:
|
|
||||||
assert (
|
|
||||||
two_stage_type == "no"
|
|
||||||
), "two_stage_type should be no if num_feature_levels=1 !!!"
|
|
||||||
self.input_proj = nn.ModuleList(
|
|
||||||
[
|
|
||||||
nn.Sequential(
|
|
||||||
nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1),
|
|
||||||
nn.GroupNorm(32, hidden_dim),
|
|
||||||
)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
self.backbone = backbone
|
|
||||||
self.aux_loss = aux_loss
|
|
||||||
self.box_pred_damping = None
|
|
||||||
|
|
||||||
self.iter_update = iter_update
|
|
||||||
assert iter_update, "Why not iter_update?"
|
|
||||||
|
|
||||||
# prepare pred layers
|
|
||||||
self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
|
|
||||||
# prepare class & box embed
|
|
||||||
_class_embed = ContrastiveEmbed()
|
|
||||||
|
|
||||||
_bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
|
|
||||||
nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0)
|
|
||||||
nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0)
|
|
||||||
|
|
||||||
if dec_pred_bbox_embed_share:
|
|
||||||
box_embed_layerlist = [
|
|
||||||
_bbox_embed for i in range(transformer.num_decoder_layers)
|
|
||||||
]
|
|
||||||
else:
|
|
||||||
box_embed_layerlist = [
|
|
||||||
copy.deepcopy(_bbox_embed)
|
|
||||||
for i in range(transformer.num_decoder_layers)
|
|
||||||
]
|
|
||||||
class_embed_layerlist = [
|
|
||||||
_class_embed for i in range(transformer.num_decoder_layers)
|
|
||||||
]
|
|
||||||
self.bbox_embed = nn.ModuleList(box_embed_layerlist)
|
|
||||||
self.class_embed = nn.ModuleList(class_embed_layerlist)
|
|
||||||
self.transformer.decoder.bbox_embed = self.bbox_embed
|
|
||||||
self.transformer.decoder.class_embed = self.class_embed
|
|
||||||
|
|
||||||
# two stage
|
|
||||||
self.two_stage_type = two_stage_type
|
|
||||||
assert two_stage_type in [
|
|
||||||
"no",
|
|
||||||
"standard",
|
|
||||||
], "unknown param {} of two_stage_type".format(two_stage_type)
|
|
||||||
if two_stage_type != "no":
|
|
||||||
if two_stage_bbox_embed_share:
|
|
||||||
assert dec_pred_bbox_embed_share
|
|
||||||
self.transformer.enc_out_bbox_embed = _bbox_embed
|
|
||||||
else:
|
|
||||||
self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed)
|
|
||||||
|
|
||||||
if two_stage_class_embed_share:
|
|
||||||
assert dec_pred_bbox_embed_share
|
|
||||||
self.transformer.enc_out_class_embed = _class_embed
|
|
||||||
else:
|
|
||||||
self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed)
|
|
||||||
|
|
||||||
self.refpoint_embed = None
|
|
||||||
|
|
||||||
self._reset_parameters()
|
|
||||||
|
|
||||||
def _reset_parameters(self):
|
|
||||||
# init input_proj
|
|
||||||
for proj in self.input_proj:
|
|
||||||
nn.init.xavier_uniform_(proj[0].weight, gain=1)
|
|
||||||
nn.init.constant_(proj[0].bias, 0)
|
|
||||||
|
|
||||||
def init_ref_points(self, use_num_queries):
|
|
||||||
self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)
|
|
||||||
|
|
||||||
def forward(self, samples: NestedTensor, targets: List = None, **kw):
|
|
||||||
"""The forward expects a NestedTensor, which consists of:
|
|
||||||
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
|
|
||||||
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
|
|
||||||
|
|
||||||
It returns a dict with the following elements:
|
|
||||||
- "pred_logits": the classification logits (including no-object) for all queries.
|
|
||||||
Shape= [batch_size x num_queries x num_classes]
|
|
||||||
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
|
|
||||||
(center_x, center_y, width, height). These values are normalized in [0, 1],
|
|
||||||
relative to the size of each individual image (disregarding possible padding).
|
|
||||||
See PostProcess for information on how to retrieve the unnormalized bounding box.
|
|
||||||
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
|
|
||||||
dictionnaries containing the two above keys for each decoder layer.
|
|
||||||
"""
|
|
||||||
if targets is None:
|
|
||||||
captions = kw["captions"]
|
|
||||||
else:
|
|
||||||
captions = [t["caption"] for t in targets]
|
|
||||||
|
|
||||||
# encoder texts
|
|
||||||
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
|
|
||||||
samples.device
|
|
||||||
)
|
|
||||||
(
|
|
||||||
text_self_attention_masks,
|
|
||||||
position_ids,
|
|
||||||
cate_to_token_mask_list,
|
|
||||||
) = generate_masks_with_special_tokens_and_transfer_map(
|
|
||||||
tokenized, self.specical_tokens, self.tokenizer
|
|
||||||
)
|
|
||||||
|
|
||||||
if text_self_attention_masks.shape[1] > self.max_text_len:
|
|
||||||
text_self_attention_masks = text_self_attention_masks[
|
|
||||||
:, : self.max_text_len, : self.max_text_len
|
|
||||||
]
|
|
||||||
position_ids = position_ids[:, : self.max_text_len]
|
|
||||||
tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len]
|
|
||||||
tokenized["attention_mask"] = tokenized["attention_mask"][
|
|
||||||
:, : self.max_text_len
|
|
||||||
]
|
|
||||||
tokenized["token_type_ids"] = tokenized["token_type_ids"][
|
|
||||||
:, : self.max_text_len
|
|
||||||
]
|
|
||||||
|
|
||||||
# extract text embeddings
|
|
||||||
if self.sub_sentence_present:
|
|
||||||
tokenized_for_encoder = {
|
|
||||||
k: v for k, v in tokenized.items() if k != "attention_mask"
|
|
||||||
}
|
|
||||||
tokenized_for_encoder["attention_mask"] = text_self_attention_masks
|
|
||||||
tokenized_for_encoder["position_ids"] = position_ids
|
|
||||||
else:
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
tokenized_for_encoder = tokenized
|
|
||||||
|
|
||||||
bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768
|
|
||||||
|
|
||||||
encoded_text = self.feat_map(
|
|
||||||
bert_output["last_hidden_state"]
|
|
||||||
) # bs, 195, d_model
|
|
||||||
text_token_mask = tokenized.attention_mask.bool() # bs, 195
|
|
||||||
# text_token_mask: True for nomask, False for mask
|
|
||||||
# text_self_attention_masks: True for nomask, False for mask
|
|
||||||
|
|
||||||
if encoded_text.shape[1] > self.max_text_len:
|
|
||||||
encoded_text = encoded_text[:, : self.max_text_len, :]
|
|
||||||
text_token_mask = text_token_mask[:, : self.max_text_len]
|
|
||||||
position_ids = position_ids[:, : self.max_text_len]
|
|
||||||
text_self_attention_masks = text_self_attention_masks[
|
|
||||||
:, : self.max_text_len, : self.max_text_len
|
|
||||||
]
|
|
||||||
|
|
||||||
text_dict = {
|
|
||||||
"encoded_text": encoded_text, # bs, 195, d_model
|
|
||||||
"text_token_mask": text_token_mask, # bs, 195
|
|
||||||
"position_ids": position_ids, # bs, 195
|
|
||||||
"text_self_attention_masks": text_self_attention_masks, # bs, 195,195
|
|
||||||
}
|
|
||||||
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
|
|
||||||
if isinstance(samples, (list, torch.Tensor)):
|
|
||||||
samples = nested_tensor_from_tensor_list(samples)
|
|
||||||
features, poss = self.backbone(samples)
|
|
||||||
|
|
||||||
srcs = []
|
|
||||||
masks = []
|
|
||||||
for l, feat in enumerate(features):
|
|
||||||
src, mask = feat.decompose()
|
|
||||||
srcs.append(self.input_proj[l](src))
|
|
||||||
masks.append(mask)
|
|
||||||
assert mask is not None
|
|
||||||
if self.num_feature_levels > len(srcs):
|
|
||||||
_len_srcs = len(srcs)
|
|
||||||
for l in range(_len_srcs, self.num_feature_levels):
|
|
||||||
if l == _len_srcs:
|
|
||||||
src = self.input_proj[l](features[-1].tensors)
|
|
||||||
else:
|
|
||||||
src = self.input_proj[l](srcs[-1])
|
|
||||||
m = samples.mask
|
|
||||||
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(
|
|
||||||
torch.bool
|
|
||||||
)[0]
|
|
||||||
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
|
|
||||||
srcs.append(src)
|
|
||||||
masks.append(mask)
|
|
||||||
poss.append(pos_l)
|
|
||||||
|
|
||||||
input_query_bbox = input_query_label = attn_mask = None
|
|
||||||
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
|
|
||||||
srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict
|
|
||||||
)
|
|
||||||
|
|
||||||
# deformable-detr-like anchor update
|
|
||||||
outputs_coord_list = []
|
|
||||||
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(
|
|
||||||
zip(reference[:-1], self.bbox_embed, hs)
|
|
||||||
):
|
|
||||||
layer_delta_unsig = layer_bbox_embed(layer_hs)
|
|
||||||
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig)
|
|
||||||
layer_outputs_unsig = layer_outputs_unsig.sigmoid()
|
|
||||||
outputs_coord_list.append(layer_outputs_unsig)
|
|
||||||
outputs_coord_list = torch.stack(outputs_coord_list)
|
|
||||||
|
|
||||||
# output
|
|
||||||
outputs_class = torch.stack(
|
|
||||||
[
|
|
||||||
layer_cls_embed(layer_hs, text_dict)
|
|
||||||
for layer_cls_embed, layer_hs in zip(self.class_embed, hs)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]}
|
|
||||||
|
|
||||||
# # for intermediate outputs
|
|
||||||
# if self.aux_loss:
|
|
||||||
# out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord_list)
|
|
||||||
|
|
||||||
# # for encoder output
|
|
||||||
# if hs_enc is not None:
|
|
||||||
# # prepare intermediate outputs
|
|
||||||
# interm_coord = ref_enc[-1]
|
|
||||||
# interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict)
|
|
||||||
# out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord}
|
|
||||||
# out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal}
|
|
||||||
|
|
||||||
return out
|
|
||||||
|
|
||||||
@torch.jit.unused
|
|
||||||
def _set_aux_loss(self, outputs_class, outputs_coord):
|
|
||||||
# this is a workaround to make torchscript happy, as torchscript
|
|
||||||
# doesn't support dictionary with non-homogeneous values, such
|
|
||||||
# as a dict having both a Tensor and a list.
|
|
||||||
return [
|
|
||||||
{"pred_logits": a, "pred_boxes": b}
|
|
||||||
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
@MODULE_BUILD_FUNCS.registe_with_name(module_name="groundingdino")
|
|
||||||
def build_groundingdino(args):
|
|
||||||
backbone = build_backbone(args)
|
|
||||||
transformer = build_transformer(args)
|
|
||||||
|
|
||||||
dn_labelbook_size = args.dn_labelbook_size
|
|
||||||
dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share
|
|
||||||
sub_sentence_present = args.sub_sentence_present
|
|
||||||
|
|
||||||
model = GroundingDINO(
|
|
||||||
backbone,
|
|
||||||
transformer,
|
|
||||||
num_queries=args.num_queries,
|
|
||||||
aux_loss=True,
|
|
||||||
iter_update=True,
|
|
||||||
query_dim=4,
|
|
||||||
num_feature_levels=args.num_feature_levels,
|
|
||||||
nheads=args.nheads,
|
|
||||||
dec_pred_bbox_embed_share=dec_pred_bbox_embed_share,
|
|
||||||
two_stage_type=args.two_stage_type,
|
|
||||||
two_stage_bbox_embed_share=args.two_stage_bbox_embed_share,
|
|
||||||
two_stage_class_embed_share=args.two_stage_class_embed_share,
|
|
||||||
num_patterns=args.num_patterns,
|
|
||||||
dn_number=0,
|
|
||||||
dn_box_noise_scale=args.dn_box_noise_scale,
|
|
||||||
dn_label_noise_ratio=args.dn_label_noise_ratio,
|
|
||||||
dn_labelbook_size=dn_labelbook_size,
|
|
||||||
text_encoder_type=args.text_encoder_type,
|
|
||||||
sub_sentence_present=sub_sentence_present,
|
|
||||||
max_text_len=args.max_text_len,
|
|
||||||
)
|
|
||||||
|
|
||||||
return model
|
|
@ -1,430 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Deformable DETR
|
|
||||||
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------------------------------
|
|
||||||
# Modified from:
|
|
||||||
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py
|
|
||||||
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
|
||||||
# https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py
|
|
||||||
# ------------------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
import math
|
|
||||||
import warnings
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from torch.autograd import Function
|
|
||||||
from torch.autograd.function import once_differentiable
|
|
||||||
from torch.nn.init import constant_, xavier_uniform_
|
|
||||||
|
|
||||||
try:
|
|
||||||
from groundingdino import _C
|
|
||||||
except BaseException:
|
|
||||||
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!")
|
|
||||||
|
|
||||||
|
|
||||||
# helpers
|
|
||||||
def _is_power_of_2(n):
|
|
||||||
if (not isinstance(n, int)) or (n < 0):
|
|
||||||
raise ValueError(
|
|
||||||
"invalid input for _is_power_of_2: {} (type: {})".format(n, type(n))
|
|
||||||
)
|
|
||||||
return (n & (n - 1) == 0) and n != 0
|
|
||||||
|
|
||||||
|
|
||||||
class MultiScaleDeformableAttnFunction(Function):
|
|
||||||
@staticmethod
|
|
||||||
def forward(
|
|
||||||
ctx,
|
|
||||||
value,
|
|
||||||
value_spatial_shapes,
|
|
||||||
value_level_start_index,
|
|
||||||
sampling_locations,
|
|
||||||
attention_weights,
|
|
||||||
im2col_step,
|
|
||||||
):
|
|
||||||
ctx.im2col_step = im2col_step
|
|
||||||
output = _C.ms_deform_attn_forward(
|
|
||||||
value,
|
|
||||||
value_spatial_shapes,
|
|
||||||
value_level_start_index,
|
|
||||||
sampling_locations,
|
|
||||||
attention_weights,
|
|
||||||
ctx.im2col_step,
|
|
||||||
)
|
|
||||||
ctx.save_for_backward(
|
|
||||||
value,
|
|
||||||
value_spatial_shapes,
|
|
||||||
value_level_start_index,
|
|
||||||
sampling_locations,
|
|
||||||
attention_weights,
|
|
||||||
)
|
|
||||||
return output
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
@once_differentiable
|
|
||||||
def backward(ctx, grad_output):
|
|
||||||
(
|
|
||||||
value,
|
|
||||||
value_spatial_shapes,
|
|
||||||
value_level_start_index,
|
|
||||||
sampling_locations,
|
|
||||||
attention_weights,
|
|
||||||
) = ctx.saved_tensors
|
|
||||||
grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward(
|
|
||||||
value,
|
|
||||||
value_spatial_shapes,
|
|
||||||
value_level_start_index,
|
|
||||||
sampling_locations,
|
|
||||||
attention_weights,
|
|
||||||
grad_output,
|
|
||||||
ctx.im2col_step,
|
|
||||||
)
|
|
||||||
|
|
||||||
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
|
|
||||||
|
|
||||||
|
|
||||||
def multi_scale_deformable_attn_pytorch(
|
|
||||||
value: torch.Tensor,
|
|
||||||
value_spatial_shapes: torch.Tensor,
|
|
||||||
sampling_locations: torch.Tensor,
|
|
||||||
attention_weights: torch.Tensor,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
bs, _, num_heads, embed_dims = value.shape
|
|
||||||
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
|
||||||
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
|
||||||
sampling_grids = 2 * sampling_locations - 1
|
|
||||||
sampling_value_list = []
|
|
||||||
for level, (H_, W_) in enumerate(value_spatial_shapes):
|
|
||||||
# bs, H_*W_, num_heads, embed_dims ->
|
|
||||||
# bs, H_*W_, num_heads*embed_dims ->
|
|
||||||
# bs, num_heads*embed_dims, H_*W_ ->
|
|
||||||
# bs*num_heads, embed_dims, H_, W_
|
|
||||||
value_l_ = (
|
|
||||||
value_list[level]
|
|
||||||
.flatten(2)
|
|
||||||
.transpose(1, 2)
|
|
||||||
.reshape(bs * num_heads, embed_dims, H_, W_)
|
|
||||||
)
|
|
||||||
# bs, num_queries, num_heads, num_points, 2 ->
|
|
||||||
# bs, num_heads, num_queries, num_points, 2 ->
|
|
||||||
# bs*num_heads, num_queries, num_points, 2
|
|
||||||
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
|
|
||||||
# bs*num_heads, embed_dims, num_queries, num_points
|
|
||||||
sampling_value_l_ = F.grid_sample(
|
|
||||||
value_l_,
|
|
||||||
sampling_grid_l_,
|
|
||||||
mode="bilinear",
|
|
||||||
padding_mode="zeros",
|
|
||||||
align_corners=False,
|
|
||||||
)
|
|
||||||
sampling_value_list.append(sampling_value_l_)
|
|
||||||
# (bs, num_queries, num_heads, num_levels, num_points) ->
|
|
||||||
# (bs, num_heads, num_queries, num_levels, num_points) ->
|
|
||||||
# (bs, num_heads, 1, num_queries, num_levels*num_points)
|
|
||||||
attention_weights = attention_weights.transpose(1, 2).reshape(
|
|
||||||
bs * num_heads, 1, num_queries, num_levels * num_points
|
|
||||||
)
|
|
||||||
output = (
|
|
||||||
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
|
||||||
.sum(-1)
|
|
||||||
.view(bs, num_heads * embed_dims, num_queries)
|
|
||||||
)
|
|
||||||
return output.transpose(1, 2).contiguous()
|
|
||||||
|
|
||||||
|
|
||||||
class MultiScaleDeformableAttention(nn.Module):
|
|
||||||
"""Multi-Scale Deformable Attention Module used in Deformable-DETR
|
|
||||||
|
|
||||||
`Deformable DETR: Deformable Transformers for End-to-End Object Detection.
|
|
||||||
<https://arxiv.org/pdf/2010.04159.pdf>`_.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
embed_dim (int): The embedding dimension of Attention. Default: 256.
|
|
||||||
num_heads (int): The number of attention heads. Default: 8.
|
|
||||||
num_levels (int): The number of feature map used in Attention. Default: 4.
|
|
||||||
num_points (int): The number of sampling points for each query
|
|
||||||
in each head. Default: 4.
|
|
||||||
img2col_steps (int): The step used in image_to_column. Defualt: 64.
|
|
||||||
dropout (float): Dropout layer used in output. Default: 0.1.
|
|
||||||
batch_first (bool): if ``True``, then the input and output tensor will be
|
|
||||||
provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)`
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
embed_dim: int = 256,
|
|
||||||
num_heads: int = 8,
|
|
||||||
num_levels: int = 4,
|
|
||||||
num_points: int = 4,
|
|
||||||
img2col_step: int = 64,
|
|
||||||
batch_first: bool = False,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
if embed_dim % num_heads != 0:
|
|
||||||
raise ValueError(
|
|
||||||
"embed_dim must be divisible by num_heads, but got {} and {}".format(
|
|
||||||
embed_dim, num_heads
|
|
||||||
)
|
|
||||||
)
|
|
||||||
head_dim = embed_dim // num_heads
|
|
||||||
|
|
||||||
self.batch_first = batch_first
|
|
||||||
|
|
||||||
if not _is_power_of_2(head_dim):
|
|
||||||
warnings.warn(
|
|
||||||
"""
|
|
||||||
You'd better set d_model in MSDeformAttn to make sure that
|
|
||||||
each dim of the attention head a power of 2, which is more efficient.
|
|
||||||
"""
|
|
||||||
)
|
|
||||||
|
|
||||||
self.im2col_step = img2col_step
|
|
||||||
self.embed_dim = embed_dim
|
|
||||||
self.num_heads = num_heads
|
|
||||||
self.num_levels = num_levels
|
|
||||||
self.num_points = num_points
|
|
||||||
self.sampling_offsets = nn.Linear(
|
|
||||||
embed_dim, num_heads * num_levels * num_points * 2
|
|
||||||
)
|
|
||||||
self.attention_weights = nn.Linear(
|
|
||||||
embed_dim, num_heads * num_levels * num_points
|
|
||||||
)
|
|
||||||
self.value_proj = nn.Linear(embed_dim, embed_dim)
|
|
||||||
self.output_proj = nn.Linear(embed_dim, embed_dim)
|
|
||||||
|
|
||||||
self.init_weights()
|
|
||||||
|
|
||||||
def _reset_parameters(self):
|
|
||||||
return self.init_weights()
|
|
||||||
|
|
||||||
def init_weights(self):
|
|
||||||
"""
|
|
||||||
Default initialization for Parameters of Module.
|
|
||||||
"""
|
|
||||||
constant_(self.sampling_offsets.weight.data, 0.0)
|
|
||||||
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (
|
|
||||||
2.0 * math.pi / self.num_heads
|
|
||||||
)
|
|
||||||
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
|
||||||
grid_init = (
|
|
||||||
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
|
||||||
.view(self.num_heads, 1, 1, 2)
|
|
||||||
.repeat(1, self.num_levels, self.num_points, 1)
|
|
||||||
)
|
|
||||||
for i in range(self.num_points):
|
|
||||||
grid_init[:, :, i, :] *= i + 1
|
|
||||||
with torch.no_grad():
|
|
||||||
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
|
||||||
constant_(self.attention_weights.weight.data, 0.0)
|
|
||||||
constant_(self.attention_weights.bias.data, 0.0)
|
|
||||||
xavier_uniform_(self.value_proj.weight.data)
|
|
||||||
constant_(self.value_proj.bias.data, 0.0)
|
|
||||||
xavier_uniform_(self.output_proj.weight.data)
|
|
||||||
constant_(self.output_proj.bias.data, 0.0)
|
|
||||||
|
|
||||||
def freeze_sampling_offsets(self):
|
|
||||||
print("Freeze sampling offsets")
|
|
||||||
self.sampling_offsets.weight.requires_grad = False
|
|
||||||
self.sampling_offsets.bias.requires_grad = False
|
|
||||||
|
|
||||||
def freeze_attention_weights(self):
|
|
||||||
print("Freeze attention weights")
|
|
||||||
self.attention_weights.weight.requires_grad = False
|
|
||||||
self.attention_weights.bias.requires_grad = False
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
query: torch.Tensor,
|
|
||||||
key: Optional[torch.Tensor] = None,
|
|
||||||
value: Optional[torch.Tensor] = None,
|
|
||||||
query_pos: Optional[torch.Tensor] = None,
|
|
||||||
key_padding_mask: Optional[torch.Tensor] = None,
|
|
||||||
reference_points: Optional[torch.Tensor] = None,
|
|
||||||
spatial_shapes: Optional[torch.Tensor] = None,
|
|
||||||
level_start_index: Optional[torch.Tensor] = None,
|
|
||||||
**kwargs
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""Forward Function of MultiScaleDeformableAttention
|
|
||||||
|
|
||||||
Args:
|
|
||||||
query (torch.Tensor): Query embeddings with shape
|
|
||||||
`(num_query, bs, embed_dim)`
|
|
||||||
key (torch.Tensor): Key embeddings with shape
|
|
||||||
`(num_key, bs, embed_dim)`
|
|
||||||
value (torch.Tensor): Value embeddings with shape
|
|
||||||
`(num_key, bs, embed_dim)`
|
|
||||||
query_pos (torch.Tensor): The position embedding for `query`. Default: None.
|
|
||||||
key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`,
|
|
||||||
indicating which elements within `key` to be ignored in attention.
|
|
||||||
reference_points (torch.Tensor): The normalized reference points
|
|
||||||
with shape `(bs, num_query, num_levels, 2)`,
|
|
||||||
all elements is range in [0, 1], top-left (0, 0),
|
|
||||||
bottom-right (1, 1), including padding are.
|
|
||||||
or `(N, Length_{query}, num_levels, 4)`, add additional
|
|
||||||
two dimensions `(h, w)` to form reference boxes.
|
|
||||||
spatial_shapes (torch.Tensor): Spatial shape of features in different levels.
|
|
||||||
With shape `(num_levels, 2)`, last dimension represents `(h, w)`.
|
|
||||||
level_start_index (torch.Tensor): The start index of each level. A tensor with
|
|
||||||
shape `(num_levels, )` which can be represented as
|
|
||||||
`[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
torch.Tensor: forward results with shape `(num_query, bs, embed_dim)`
|
|
||||||
"""
|
|
||||||
|
|
||||||
if value is None:
|
|
||||||
value = query
|
|
||||||
|
|
||||||
if query_pos is not None:
|
|
||||||
query = query + query_pos
|
|
||||||
|
|
||||||
if not self.batch_first:
|
|
||||||
# change to (bs, num_query ,embed_dims)
|
|
||||||
query = query.permute(1, 0, 2)
|
|
||||||
value = value.permute(1, 0, 2)
|
|
||||||
|
|
||||||
bs, num_query, _ = query.shape
|
|
||||||
bs, num_value, _ = value.shape
|
|
||||||
|
|
||||||
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
|
|
||||||
|
|
||||||
value = self.value_proj(value)
|
|
||||||
if key_padding_mask is not None:
|
|
||||||
value = value.masked_fill(key_padding_mask[..., None], float(0))
|
|
||||||
value = value.view(bs, num_value, self.num_heads, -1)
|
|
||||||
sampling_offsets = self.sampling_offsets(query).view(
|
|
||||||
bs, num_query, self.num_heads, self.num_levels, self.num_points, 2
|
|
||||||
)
|
|
||||||
attention_weights = self.attention_weights(query).view(
|
|
||||||
bs, num_query, self.num_heads, self.num_levels * self.num_points
|
|
||||||
)
|
|
||||||
attention_weights = attention_weights.softmax(-1)
|
|
||||||
attention_weights = attention_weights.view(
|
|
||||||
bs,
|
|
||||||
num_query,
|
|
||||||
self.num_heads,
|
|
||||||
self.num_levels,
|
|
||||||
self.num_points,
|
|
||||||
)
|
|
||||||
|
|
||||||
# bs, num_query, num_heads, num_levels, num_points, 2
|
|
||||||
if reference_points.shape[-1] == 2:
|
|
||||||
offset_normalizer = torch.stack(
|
|
||||||
[spatial_shapes[..., 1], spatial_shapes[..., 0]], -1
|
|
||||||
)
|
|
||||||
sampling_locations = (
|
|
||||||
reference_points[:, :, None, :, None, :]
|
|
||||||
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
|
||||||
)
|
|
||||||
elif reference_points.shape[-1] == 4:
|
|
||||||
sampling_locations = (
|
|
||||||
reference_points[:, :, None, :, None, :2]
|
|
||||||
+ sampling_offsets
|
|
||||||
/ self.num_points
|
|
||||||
* reference_points[:, :, None, :, None, 2:]
|
|
||||||
* 0.5
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
"Last dim of reference_points must be 2 or 4, but get {} instead.".format(
|
|
||||||
reference_points.shape[-1]
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
if torch.cuda.is_available() and value.is_cuda:
|
|
||||||
halffloat = False
|
|
||||||
if value.dtype == torch.float16:
|
|
||||||
halffloat = True
|
|
||||||
value = value.float()
|
|
||||||
sampling_locations = sampling_locations.float()
|
|
||||||
attention_weights = attention_weights.float()
|
|
||||||
|
|
||||||
output = MultiScaleDeformableAttnFunction.apply(
|
|
||||||
value,
|
|
||||||
spatial_shapes,
|
|
||||||
level_start_index,
|
|
||||||
sampling_locations,
|
|
||||||
attention_weights,
|
|
||||||
self.im2col_step,
|
|
||||||
)
|
|
||||||
|
|
||||||
if halffloat:
|
|
||||||
output = output.half()
|
|
||||||
else:
|
|
||||||
output = multi_scale_deformable_attn_pytorch(
|
|
||||||
value, spatial_shapes, sampling_locations, attention_weights
|
|
||||||
)
|
|
||||||
|
|
||||||
output = self.output_proj(output)
|
|
||||||
|
|
||||||
if not self.batch_first:
|
|
||||||
output = output.permute(1, 0, 2)
|
|
||||||
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
def create_dummy_class(klass, dependency, message=""):
|
|
||||||
"""
|
|
||||||
When a dependency of a class is not available, create a dummy class which throws ImportError
|
|
||||||
when used.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
klass (str): name of the class.
|
|
||||||
dependency (str): name of the dependency.
|
|
||||||
message: extra message to print
|
|
||||||
Returns:
|
|
||||||
class: a class object
|
|
||||||
"""
|
|
||||||
err = "Cannot import '{}', therefore '{}' is not available.".format(
|
|
||||||
dependency, klass
|
|
||||||
)
|
|
||||||
if message:
|
|
||||||
err = err + " " + message
|
|
||||||
|
|
||||||
class _DummyMetaClass(type):
|
|
||||||
# throw error on class attribute access
|
|
||||||
def __getattr__(_, __): # noqa: B902
|
|
||||||
raise ImportError(err)
|
|
||||||
|
|
||||||
class _Dummy(object, metaclass=_DummyMetaClass):
|
|
||||||
# throw error on constructor
|
|
||||||
def __init__(self, *args, **kwargs):
|
|
||||||
raise ImportError(err)
|
|
||||||
|
|
||||||
return _Dummy
|
|
||||||
|
|
||||||
|
|
||||||
def create_dummy_func(func, dependency, message=""):
|
|
||||||
"""
|
|
||||||
When a dependency of a function is not available, create a dummy function which throws
|
|
||||||
ImportError when used.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
func (str): name of the function.
|
|
||||||
dependency (str or list[str]): name(s) of the dependency.
|
|
||||||
message: extra message to print
|
|
||||||
Returns:
|
|
||||||
function: a function object
|
|
||||||
"""
|
|
||||||
err = "Cannot import '{}', therefore '{}' is not available.".format(
|
|
||||||
dependency, func
|
|
||||||
)
|
|
||||||
if message:
|
|
||||||
err = err + " " + message
|
|
||||||
|
|
||||||
if isinstance(dependency, (list, tuple)):
|
|
||||||
dependency = ",".join(dependency)
|
|
||||||
|
|
||||||
def _dummy(*args, **kwargs):
|
|
||||||
raise ImportError(err)
|
|
||||||
|
|
||||||
return _dummy
|
|
@ -1,994 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# DINO
|
|
||||||
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Conditional DETR Transformer class.
|
|
||||||
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Modified from DETR (https://github.com/facebookresearch/detr)
|
|
||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.utils.checkpoint as checkpoint
|
|
||||||
from torch import Tensor, nn
|
|
||||||
|
|
||||||
from groundingdino.util.misc import inverse_sigmoid
|
|
||||||
|
|
||||||
from .fuse_modules import BiAttentionBlock
|
|
||||||
from .ms_deform_attn import MultiScaleDeformableAttention as MSDeformAttn
|
|
||||||
from .transformer_vanilla import TransformerEncoderLayer
|
|
||||||
from .utils import (
|
|
||||||
MLP,
|
|
||||||
_get_activation_fn,
|
|
||||||
_get_clones,
|
|
||||||
gen_encoder_output_proposals,
|
|
||||||
gen_sineembed_for_position,
|
|
||||||
get_sine_pos_embed,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class Transformer(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
d_model=256,
|
|
||||||
nhead=8,
|
|
||||||
num_queries=300,
|
|
||||||
num_encoder_layers=6,
|
|
||||||
num_unicoder_layers=0,
|
|
||||||
num_decoder_layers=6,
|
|
||||||
dim_feedforward=2048,
|
|
||||||
dropout=0.0,
|
|
||||||
activation="relu",
|
|
||||||
normalize_before=False,
|
|
||||||
return_intermediate_dec=False,
|
|
||||||
query_dim=4,
|
|
||||||
num_patterns=0,
|
|
||||||
# for deformable encoder
|
|
||||||
num_feature_levels=1,
|
|
||||||
enc_n_points=4,
|
|
||||||
dec_n_points=4,
|
|
||||||
# init query
|
|
||||||
learnable_tgt_init=False,
|
|
||||||
# two stage
|
|
||||||
two_stage_type="no", # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1']
|
|
||||||
embed_init_tgt=False,
|
|
||||||
# for text
|
|
||||||
use_text_enhancer=False,
|
|
||||||
use_fusion_layer=False,
|
|
||||||
use_checkpoint=False,
|
|
||||||
use_transformer_ckpt=False,
|
|
||||||
use_text_cross_attention=False,
|
|
||||||
text_dropout=0.1,
|
|
||||||
fusion_dropout=0.1,
|
|
||||||
fusion_droppath=0.0,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.num_feature_levels = num_feature_levels
|
|
||||||
self.num_encoder_layers = num_encoder_layers
|
|
||||||
self.num_unicoder_layers = num_unicoder_layers
|
|
||||||
self.num_decoder_layers = num_decoder_layers
|
|
||||||
self.num_queries = num_queries
|
|
||||||
assert query_dim == 4
|
|
||||||
|
|
||||||
# choose encoder layer type
|
|
||||||
encoder_layer = DeformableTransformerEncoderLayer(
|
|
||||||
d_model,
|
|
||||||
dim_feedforward,
|
|
||||||
dropout,
|
|
||||||
activation,
|
|
||||||
num_feature_levels,
|
|
||||||
nhead,
|
|
||||||
enc_n_points,
|
|
||||||
)
|
|
||||||
|
|
||||||
if use_text_enhancer:
|
|
||||||
text_enhance_layer = TransformerEncoderLayer(
|
|
||||||
d_model=d_model,
|
|
||||||
nhead=nhead // 2,
|
|
||||||
dim_feedforward=dim_feedforward // 2,
|
|
||||||
dropout=text_dropout,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
text_enhance_layer = None
|
|
||||||
|
|
||||||
if use_fusion_layer:
|
|
||||||
feature_fusion_layer = BiAttentionBlock(
|
|
||||||
v_dim=d_model,
|
|
||||||
l_dim=d_model,
|
|
||||||
embed_dim=dim_feedforward // 2,
|
|
||||||
num_heads=nhead // 2,
|
|
||||||
dropout=fusion_dropout,
|
|
||||||
drop_path=fusion_droppath,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
feature_fusion_layer = None
|
|
||||||
|
|
||||||
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
|
||||||
assert encoder_norm is None
|
|
||||||
self.encoder = TransformerEncoder(
|
|
||||||
encoder_layer,
|
|
||||||
num_encoder_layers,
|
|
||||||
d_model=d_model,
|
|
||||||
num_queries=num_queries,
|
|
||||||
text_enhance_layer=text_enhance_layer,
|
|
||||||
feature_fusion_layer=feature_fusion_layer,
|
|
||||||
use_checkpoint=use_checkpoint,
|
|
||||||
use_transformer_ckpt=use_transformer_ckpt,
|
|
||||||
)
|
|
||||||
|
|
||||||
# choose decoder layer type
|
|
||||||
decoder_layer = DeformableTransformerDecoderLayer(
|
|
||||||
d_model,
|
|
||||||
dim_feedforward,
|
|
||||||
dropout,
|
|
||||||
activation,
|
|
||||||
num_feature_levels,
|
|
||||||
nhead,
|
|
||||||
dec_n_points,
|
|
||||||
use_text_cross_attention=use_text_cross_attention,
|
|
||||||
)
|
|
||||||
|
|
||||||
decoder_norm = nn.LayerNorm(d_model)
|
|
||||||
self.decoder = TransformerDecoder(
|
|
||||||
decoder_layer,
|
|
||||||
num_decoder_layers,
|
|
||||||
decoder_norm,
|
|
||||||
return_intermediate=return_intermediate_dec,
|
|
||||||
d_model=d_model,
|
|
||||||
query_dim=query_dim,
|
|
||||||
num_feature_levels=num_feature_levels,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.d_model = d_model
|
|
||||||
self.nhead = nhead
|
|
||||||
self.dec_layers = num_decoder_layers
|
|
||||||
self.num_queries = num_queries # useful for single stage model only
|
|
||||||
self.num_patterns = num_patterns
|
|
||||||
if not isinstance(num_patterns, int):
|
|
||||||
Warning("num_patterns should be int but {}".format(type(num_patterns)))
|
|
||||||
self.num_patterns = 0
|
|
||||||
|
|
||||||
if num_feature_levels > 1:
|
|
||||||
if self.num_encoder_layers > 0:
|
|
||||||
self.level_embed = nn.Parameter(
|
|
||||||
torch.Tensor(num_feature_levels, d_model)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
self.level_embed = None
|
|
||||||
|
|
||||||
self.learnable_tgt_init = learnable_tgt_init
|
|
||||||
assert learnable_tgt_init, "why not learnable_tgt_init"
|
|
||||||
self.embed_init_tgt = embed_init_tgt
|
|
||||||
if (two_stage_type != "no" and embed_init_tgt) or (two_stage_type == "no"):
|
|
||||||
self.tgt_embed = nn.Embedding(self.num_queries, d_model)
|
|
||||||
nn.init.normal_(self.tgt_embed.weight.data)
|
|
||||||
else:
|
|
||||||
self.tgt_embed = None
|
|
||||||
|
|
||||||
# for two stage
|
|
||||||
self.two_stage_type = two_stage_type
|
|
||||||
assert two_stage_type in [
|
|
||||||
"no",
|
|
||||||
"standard",
|
|
||||||
], "unknown param {} of two_stage_type".format(two_stage_type)
|
|
||||||
if two_stage_type == "standard":
|
|
||||||
# anchor selection at the output of encoder
|
|
||||||
self.enc_output = nn.Linear(d_model, d_model)
|
|
||||||
self.enc_output_norm = nn.LayerNorm(d_model)
|
|
||||||
self.two_stage_wh_embedding = None
|
|
||||||
|
|
||||||
if two_stage_type == "no":
|
|
||||||
self.init_ref_points(num_queries) # init self.refpoint_embed
|
|
||||||
|
|
||||||
self.enc_out_class_embed = None
|
|
||||||
self.enc_out_bbox_embed = None
|
|
||||||
|
|
||||||
self._reset_parameters()
|
|
||||||
|
|
||||||
def _reset_parameters(self):
|
|
||||||
for p in self.parameters():
|
|
||||||
if p.dim() > 1:
|
|
||||||
nn.init.xavier_uniform_(p)
|
|
||||||
for m in self.modules():
|
|
||||||
if isinstance(m, MSDeformAttn):
|
|
||||||
m._reset_parameters()
|
|
||||||
if self.num_feature_levels > 1 and self.level_embed is not None:
|
|
||||||
nn.init.normal_(self.level_embed)
|
|
||||||
|
|
||||||
def get_valid_ratio(self, mask):
|
|
||||||
_, H, W = mask.shape
|
|
||||||
valid_H = torch.sum(~mask[:, :, 0], 1)
|
|
||||||
valid_W = torch.sum(~mask[:, 0, :], 1)
|
|
||||||
valid_ratio_h = valid_H.float() / H
|
|
||||||
valid_ratio_w = valid_W.float() / W
|
|
||||||
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
|
|
||||||
return valid_ratio
|
|
||||||
|
|
||||||
def init_ref_points(self, use_num_queries):
|
|
||||||
self.refpoint_embed = nn.Embedding(use_num_queries, 4)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
srcs,
|
|
||||||
masks,
|
|
||||||
refpoint_embed,
|
|
||||||
pos_embeds,
|
|
||||||
tgt,
|
|
||||||
attn_mask=None,
|
|
||||||
text_dict=None,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Input:
|
|
||||||
- srcs: List of multi features [bs, ci, hi, wi]
|
|
||||||
- masks: List of multi masks [bs, hi, wi]
|
|
||||||
- refpoint_embed: [bs, num_dn, 4]. None in infer
|
|
||||||
- pos_embeds: List of multi pos embeds [bs, ci, hi, wi]
|
|
||||||
- tgt: [bs, num_dn, d_model]. None in infer
|
|
||||||
|
|
||||||
"""
|
|
||||||
# prepare input for encoder
|
|
||||||
src_flatten = []
|
|
||||||
mask_flatten = []
|
|
||||||
lvl_pos_embed_flatten = []
|
|
||||||
spatial_shapes = []
|
|
||||||
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
|
|
||||||
bs, c, h, w = src.shape
|
|
||||||
spatial_shape = (h, w)
|
|
||||||
spatial_shapes.append(spatial_shape)
|
|
||||||
|
|
||||||
src = src.flatten(2).transpose(1, 2) # bs, hw, c
|
|
||||||
mask = mask.flatten(1) # bs, hw
|
|
||||||
pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c
|
|
||||||
if self.num_feature_levels > 1 and self.level_embed is not None:
|
|
||||||
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
|
|
||||||
else:
|
|
||||||
lvl_pos_embed = pos_embed
|
|
||||||
lvl_pos_embed_flatten.append(lvl_pos_embed)
|
|
||||||
src_flatten.append(src)
|
|
||||||
mask_flatten.append(mask)
|
|
||||||
src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c
|
|
||||||
mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw}
|
|
||||||
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c
|
|
||||||
spatial_shapes = torch.as_tensor(
|
|
||||||
spatial_shapes, dtype=torch.long, device=src_flatten.device
|
|
||||||
)
|
|
||||||
level_start_index = torch.cat(
|
|
||||||
(spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])
|
|
||||||
)
|
|
||||||
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
|
|
||||||
|
|
||||||
# two stage
|
|
||||||
|
|
||||||
#########################################################
|
|
||||||
# Begin Encoder
|
|
||||||
#########################################################
|
|
||||||
memory, memory_text = self.encoder(
|
|
||||||
src_flatten,
|
|
||||||
pos=lvl_pos_embed_flatten,
|
|
||||||
level_start_index=level_start_index,
|
|
||||||
spatial_shapes=spatial_shapes,
|
|
||||||
valid_ratios=valid_ratios,
|
|
||||||
key_padding_mask=mask_flatten,
|
|
||||||
memory_text=text_dict["encoded_text"],
|
|
||||||
text_attention_mask=~text_dict["text_token_mask"],
|
|
||||||
# we ~ the mask . False means use the token; True means pad the token
|
|
||||||
position_ids=text_dict["position_ids"],
|
|
||||||
text_self_attention_masks=text_dict["text_self_attention_masks"],
|
|
||||||
)
|
|
||||||
#########################################################
|
|
||||||
# End Encoder
|
|
||||||
# - memory: bs, \sum{hw}, c
|
|
||||||
# - mask_flatten: bs, \sum{hw}
|
|
||||||
# - lvl_pos_embed_flatten: bs, \sum{hw}, c
|
|
||||||
# - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
|
|
||||||
# - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
|
|
||||||
#########################################################
|
|
||||||
text_dict["encoded_text"] = memory_text
|
|
||||||
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
|
|
||||||
# if memory.isnan().any() | memory.isinf().any():
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
|
|
||||||
if self.two_stage_type == "standard":
|
|
||||||
output_memory, output_proposals = gen_encoder_output_proposals(
|
|
||||||
memory, mask_flatten, spatial_shapes
|
|
||||||
)
|
|
||||||
output_memory = self.enc_output_norm(self.enc_output(output_memory))
|
|
||||||
|
|
||||||
if text_dict is not None:
|
|
||||||
enc_outputs_class_unselected = self.enc_out_class_embed(
|
|
||||||
output_memory, text_dict
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
enc_outputs_class_unselected = self.enc_out_class_embed(output_memory)
|
|
||||||
|
|
||||||
topk_logits = enc_outputs_class_unselected.max(-1)[0]
|
|
||||||
enc_outputs_coord_unselected = (
|
|
||||||
self.enc_out_bbox_embed(output_memory) + output_proposals
|
|
||||||
) # (bs, \sum{hw}, 4) unsigmoid
|
|
||||||
topk = self.num_queries
|
|
||||||
|
|
||||||
topk_proposals = torch.topk(topk_logits, topk, dim=1)[1] # bs, nq
|
|
||||||
|
|
||||||
# gather boxes
|
|
||||||
refpoint_embed_undetach = torch.gather(
|
|
||||||
enc_outputs_coord_unselected,
|
|
||||||
1,
|
|
||||||
topk_proposals.unsqueeze(-1).repeat(1, 1, 4),
|
|
||||||
) # unsigmoid
|
|
||||||
refpoint_embed_ = refpoint_embed_undetach.detach()
|
|
||||||
init_box_proposal = torch.gather(
|
|
||||||
output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
|
|
||||||
).sigmoid() # sigmoid
|
|
||||||
|
|
||||||
# gather tgt
|
|
||||||
tgt_undetach = torch.gather(
|
|
||||||
output_memory,
|
|
||||||
1,
|
|
||||||
topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model),
|
|
||||||
)
|
|
||||||
if self.embed_init_tgt:
|
|
||||||
tgt_ = (
|
|
||||||
self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
|
|
||||||
) # nq, bs, d_model
|
|
||||||
else:
|
|
||||||
tgt_ = tgt_undetach.detach()
|
|
||||||
|
|
||||||
if refpoint_embed is not None:
|
|
||||||
refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
|
|
||||||
tgt = torch.cat([tgt, tgt_], dim=1)
|
|
||||||
else:
|
|
||||||
refpoint_embed, tgt = refpoint_embed_, tgt_
|
|
||||||
|
|
||||||
elif self.two_stage_type == "no":
|
|
||||||
tgt_ = (
|
|
||||||
self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
|
|
||||||
) # nq, bs, d_model
|
|
||||||
refpoint_embed_ = (
|
|
||||||
self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
|
|
||||||
) # nq, bs, 4
|
|
||||||
|
|
||||||
if refpoint_embed is not None:
|
|
||||||
refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
|
|
||||||
tgt = torch.cat([tgt, tgt_], dim=1)
|
|
||||||
else:
|
|
||||||
refpoint_embed, tgt = refpoint_embed_, tgt_
|
|
||||||
|
|
||||||
if self.num_patterns > 0:
|
|
||||||
tgt_embed = tgt.repeat(1, self.num_patterns, 1)
|
|
||||||
refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1)
|
|
||||||
tgt_pat = self.patterns.weight[None, :, :].repeat_interleave(
|
|
||||||
self.num_queries, 1
|
|
||||||
) # 1, n_q*n_pat, d_model
|
|
||||||
tgt = tgt_embed + tgt_pat
|
|
||||||
|
|
||||||
init_box_proposal = refpoint_embed_.sigmoid()
|
|
||||||
|
|
||||||
else:
|
|
||||||
raise NotImplementedError(
|
|
||||||
"unknown two_stage_type {}".format(self.two_stage_type)
|
|
||||||
)
|
|
||||||
#########################################################
|
|
||||||
# End preparing tgt
|
|
||||||
# - tgt: bs, NQ, d_model
|
|
||||||
# - refpoint_embed(unsigmoid): bs, NQ, d_model
|
|
||||||
#########################################################
|
|
||||||
|
|
||||||
#########################################################
|
|
||||||
# Begin Decoder
|
|
||||||
#########################################################
|
|
||||||
hs, references = self.decoder(
|
|
||||||
tgt=tgt.transpose(0, 1),
|
|
||||||
memory=memory.transpose(0, 1),
|
|
||||||
memory_key_padding_mask=mask_flatten,
|
|
||||||
pos=lvl_pos_embed_flatten.transpose(0, 1),
|
|
||||||
refpoints_unsigmoid=refpoint_embed.transpose(0, 1),
|
|
||||||
level_start_index=level_start_index,
|
|
||||||
spatial_shapes=spatial_shapes,
|
|
||||||
valid_ratios=valid_ratios,
|
|
||||||
tgt_mask=attn_mask,
|
|
||||||
memory_text=text_dict["encoded_text"],
|
|
||||||
text_attention_mask=~text_dict["text_token_mask"],
|
|
||||||
# we ~ the mask . False means use the token; True means pad the token
|
|
||||||
)
|
|
||||||
#########################################################
|
|
||||||
# End Decoder
|
|
||||||
# hs: n_dec, bs, nq, d_model
|
|
||||||
# references: n_dec+1, bs, nq, query_dim
|
|
||||||
#########################################################
|
|
||||||
|
|
||||||
#########################################################
|
|
||||||
# Begin postprocess
|
|
||||||
#########################################################
|
|
||||||
if self.two_stage_type == "standard":
|
|
||||||
hs_enc = tgt_undetach.unsqueeze(0)
|
|
||||||
ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0)
|
|
||||||
else:
|
|
||||||
hs_enc = ref_enc = None
|
|
||||||
#########################################################
|
|
||||||
# End postprocess
|
|
||||||
# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None
|
|
||||||
# ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None
|
|
||||||
#########################################################
|
|
||||||
|
|
||||||
return hs, references, hs_enc, ref_enc, init_box_proposal
|
|
||||||
# hs: (n_dec, bs, nq, d_model)
|
|
||||||
# references: sigmoid coordinates. (n_dec+1, bs, bq, 4)
|
|
||||||
# hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None
|
|
||||||
# ref_enc: sigmoid coordinates. \
|
|
||||||
# (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerEncoder(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
encoder_layer,
|
|
||||||
num_layers,
|
|
||||||
d_model=256,
|
|
||||||
num_queries=300,
|
|
||||||
enc_layer_share=False,
|
|
||||||
text_enhance_layer=None,
|
|
||||||
feature_fusion_layer=None,
|
|
||||||
use_checkpoint=False,
|
|
||||||
use_transformer_ckpt=False,
|
|
||||||
):
|
|
||||||
"""_summary_
|
|
||||||
|
|
||||||
Args:
|
|
||||||
encoder_layer (_type_): _description_
|
|
||||||
num_layers (_type_): _description_
|
|
||||||
norm (_type_, optional): _description_. Defaults to None.
|
|
||||||
d_model (int, optional): _description_. Defaults to 256.
|
|
||||||
num_queries (int, optional): _description_. Defaults to 300.
|
|
||||||
enc_layer_share (bool, optional): _description_. Defaults to False.
|
|
||||||
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
# prepare layers
|
|
||||||
self.layers = []
|
|
||||||
self.text_layers = []
|
|
||||||
self.fusion_layers = []
|
|
||||||
if num_layers > 0:
|
|
||||||
self.layers = _get_clones(
|
|
||||||
encoder_layer, num_layers, layer_share=enc_layer_share
|
|
||||||
)
|
|
||||||
|
|
||||||
if text_enhance_layer is not None:
|
|
||||||
self.text_layers = _get_clones(
|
|
||||||
text_enhance_layer, num_layers, layer_share=enc_layer_share
|
|
||||||
)
|
|
||||||
if feature_fusion_layer is not None:
|
|
||||||
self.fusion_layers = _get_clones(
|
|
||||||
feature_fusion_layer, num_layers, layer_share=enc_layer_share
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
self.layers = []
|
|
||||||
del encoder_layer
|
|
||||||
|
|
||||||
if text_enhance_layer is not None:
|
|
||||||
self.text_layers = []
|
|
||||||
del text_enhance_layer
|
|
||||||
if feature_fusion_layer is not None:
|
|
||||||
self.fusion_layers = []
|
|
||||||
del feature_fusion_layer
|
|
||||||
|
|
||||||
self.query_scale = None
|
|
||||||
self.num_queries = num_queries
|
|
||||||
self.num_layers = num_layers
|
|
||||||
self.d_model = d_model
|
|
||||||
|
|
||||||
self.use_checkpoint = use_checkpoint
|
|
||||||
self.use_transformer_ckpt = use_transformer_ckpt
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def get_reference_points(spatial_shapes, valid_ratios, device):
|
|
||||||
reference_points_list = []
|
|
||||||
for lvl, (H_, W_) in enumerate(spatial_shapes):
|
|
||||||
ref_y, ref_x = torch.meshgrid(
|
|
||||||
torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
|
|
||||||
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device),
|
|
||||||
)
|
|
||||||
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
|
|
||||||
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
|
|
||||||
ref = torch.stack((ref_x, ref_y), -1)
|
|
||||||
reference_points_list.append(ref)
|
|
||||||
reference_points = torch.cat(reference_points_list, 1)
|
|
||||||
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
|
|
||||||
return reference_points
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
# for images
|
|
||||||
src: Tensor,
|
|
||||||
pos: Tensor,
|
|
||||||
spatial_shapes: Tensor,
|
|
||||||
level_start_index: Tensor,
|
|
||||||
valid_ratios: Tensor,
|
|
||||||
key_padding_mask: Tensor,
|
|
||||||
# for texts
|
|
||||||
memory_text: Tensor = None,
|
|
||||||
text_attention_mask: Tensor = None,
|
|
||||||
pos_text: Tensor = None,
|
|
||||||
text_self_attention_masks: Tensor = None,
|
|
||||||
position_ids: Tensor = None,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Input:
|
|
||||||
- src: [bs, sum(hi*wi), 256]
|
|
||||||
- pos: pos embed for src. [bs, sum(hi*wi), 256]
|
|
||||||
- spatial_shapes: h,w of each level [num_level, 2]
|
|
||||||
- level_start_index: [num_level] start point of level in sum(hi*wi).
|
|
||||||
- valid_ratios: [bs, num_level, 2]
|
|
||||||
- key_padding_mask: [bs, sum(hi*wi)]
|
|
||||||
|
|
||||||
- memory_text: bs, n_text, 256
|
|
||||||
- text_attention_mask: bs, n_text
|
|
||||||
False for no padding; True for padding
|
|
||||||
- pos_text: bs, n_text, 256
|
|
||||||
|
|
||||||
- position_ids: bs, n_text
|
|
||||||
Intermedia:
|
|
||||||
- reference_points: [bs, sum(hi*wi), num_level, 2]
|
|
||||||
Outpus:
|
|
||||||
- output: [bs, sum(hi*wi), 256]
|
|
||||||
"""
|
|
||||||
|
|
||||||
output = src
|
|
||||||
|
|
||||||
# preparation and reshape
|
|
||||||
if self.num_layers > 0:
|
|
||||||
reference_points = self.get_reference_points(
|
|
||||||
spatial_shapes, valid_ratios, device=src.device
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.text_layers:
|
|
||||||
# generate pos_text
|
|
||||||
bs, n_text, text_dim = memory_text.shape
|
|
||||||
if pos_text is None and position_ids is None:
|
|
||||||
pos_text = (
|
|
||||||
torch.arange(n_text, device=memory_text.device)
|
|
||||||
.float()
|
|
||||||
.unsqueeze(0)
|
|
||||||
.unsqueeze(-1)
|
|
||||||
.repeat(bs, 1, 1)
|
|
||||||
)
|
|
||||||
pos_text = get_sine_pos_embed(
|
|
||||||
pos_text, num_pos_feats=256, exchange_xy=False
|
|
||||||
)
|
|
||||||
if position_ids is not None:
|
|
||||||
pos_text = get_sine_pos_embed(
|
|
||||||
position_ids[..., None], num_pos_feats=256, exchange_xy=False
|
|
||||||
)
|
|
||||||
|
|
||||||
# main process
|
|
||||||
for layer_id, layer in enumerate(self.layers):
|
|
||||||
# if output.isnan().any() or memory_text.isnan().any():
|
|
||||||
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
if self.fusion_layers:
|
|
||||||
if self.use_checkpoint:
|
|
||||||
output, memory_text = checkpoint.checkpoint(
|
|
||||||
self.fusion_layers[layer_id],
|
|
||||||
output,
|
|
||||||
memory_text,
|
|
||||||
key_padding_mask,
|
|
||||||
text_attention_mask,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
output, memory_text = self.fusion_layers[layer_id](
|
|
||||||
v=output,
|
|
||||||
l=memory_text,
|
|
||||||
attention_mask_v=key_padding_mask,
|
|
||||||
attention_mask_l=text_attention_mask,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.text_layers:
|
|
||||||
memory_text = self.text_layers[layer_id](
|
|
||||||
src=memory_text.transpose(0, 1),
|
|
||||||
src_mask=~text_self_attention_masks, # note we use ~ for mask here
|
|
||||||
src_key_padding_mask=text_attention_mask,
|
|
||||||
pos=(pos_text.transpose(0, 1) if pos_text is not None else None),
|
|
||||||
).transpose(0, 1)
|
|
||||||
|
|
||||||
# main process
|
|
||||||
if self.use_transformer_ckpt:
|
|
||||||
output = checkpoint.checkpoint(
|
|
||||||
layer,
|
|
||||||
output,
|
|
||||||
pos,
|
|
||||||
reference_points,
|
|
||||||
spatial_shapes,
|
|
||||||
level_start_index,
|
|
||||||
key_padding_mask,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
output = layer(
|
|
||||||
src=output,
|
|
||||||
pos=pos,
|
|
||||||
reference_points=reference_points,
|
|
||||||
spatial_shapes=spatial_shapes,
|
|
||||||
level_start_index=level_start_index,
|
|
||||||
key_padding_mask=key_padding_mask,
|
|
||||||
)
|
|
||||||
|
|
||||||
return output, memory_text
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerDecoder(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
decoder_layer,
|
|
||||||
num_layers,
|
|
||||||
norm=None,
|
|
||||||
return_intermediate=False,
|
|
||||||
d_model=256,
|
|
||||||
query_dim=4,
|
|
||||||
num_feature_levels=1,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
if num_layers > 0:
|
|
||||||
self.layers = _get_clones(decoder_layer, num_layers)
|
|
||||||
else:
|
|
||||||
self.layers = []
|
|
||||||
self.num_layers = num_layers
|
|
||||||
self.norm = norm
|
|
||||||
self.return_intermediate = return_intermediate
|
|
||||||
assert return_intermediate, "support return_intermediate only"
|
|
||||||
self.query_dim = query_dim
|
|
||||||
assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim)
|
|
||||||
self.num_feature_levels = num_feature_levels
|
|
||||||
|
|
||||||
self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2)
|
|
||||||
self.query_pos_sine_scale = None
|
|
||||||
|
|
||||||
self.query_scale = None
|
|
||||||
self.bbox_embed = None
|
|
||||||
self.class_embed = None
|
|
||||||
|
|
||||||
self.d_model = d_model
|
|
||||||
|
|
||||||
self.ref_anchor_head = None
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
tgt,
|
|
||||||
memory,
|
|
||||||
tgt_mask: Optional[Tensor] = None,
|
|
||||||
memory_mask: Optional[Tensor] = None,
|
|
||||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
|
||||||
memory_key_padding_mask: Optional[Tensor] = None,
|
|
||||||
pos: Optional[Tensor] = None,
|
|
||||||
refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2
|
|
||||||
# for memory
|
|
||||||
level_start_index: Optional[Tensor] = None, # num_levels
|
|
||||||
spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
|
|
||||||
valid_ratios: Optional[Tensor] = None,
|
|
||||||
# for text
|
|
||||||
memory_text: Optional[Tensor] = None,
|
|
||||||
text_attention_mask: Optional[Tensor] = None,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Input:
|
|
||||||
- tgt: nq, bs, d_model
|
|
||||||
- memory: hw, bs, d_model
|
|
||||||
- pos: hw, bs, d_model
|
|
||||||
- refpoints_unsigmoid: nq, bs, 2/4
|
|
||||||
- valid_ratios/spatial_shapes: bs, nlevel, 2
|
|
||||||
"""
|
|
||||||
output = tgt
|
|
||||||
|
|
||||||
intermediate = []
|
|
||||||
reference_points = refpoints_unsigmoid.sigmoid()
|
|
||||||
ref_points = [reference_points]
|
|
||||||
|
|
||||||
for layer_id, layer in enumerate(self.layers):
|
|
||||||
if reference_points.shape[-1] == 4:
|
|
||||||
reference_points_input = (
|
|
||||||
reference_points[:, :, None]
|
|
||||||
* torch.cat([valid_ratios, valid_ratios], -1)[None, :]
|
|
||||||
) # nq, bs, nlevel, 4
|
|
||||||
else:
|
|
||||||
assert reference_points.shape[-1] == 2
|
|
||||||
reference_points_input = (
|
|
||||||
reference_points[:, :, None] * valid_ratios[None, :]
|
|
||||||
)
|
|
||||||
query_sine_embed = gen_sineembed_for_position(
|
|
||||||
reference_points_input[:, :, 0, :]
|
|
||||||
) # nq, bs, 256*2
|
|
||||||
|
|
||||||
# conditional query
|
|
||||||
raw_query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256
|
|
||||||
pos_scale = self.query_scale(output) if self.query_scale is not None else 1
|
|
||||||
query_pos = pos_scale * raw_query_pos
|
|
||||||
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
|
|
||||||
# if query_pos.isnan().any() | query_pos.isinf().any():
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
|
|
||||||
# main process
|
|
||||||
output = layer(
|
|
||||||
tgt=output,
|
|
||||||
tgt_query_pos=query_pos,
|
|
||||||
tgt_query_sine_embed=query_sine_embed,
|
|
||||||
tgt_key_padding_mask=tgt_key_padding_mask,
|
|
||||||
tgt_reference_points=reference_points_input,
|
|
||||||
memory_text=memory_text,
|
|
||||||
text_attention_mask=text_attention_mask,
|
|
||||||
memory=memory,
|
|
||||||
memory_key_padding_mask=memory_key_padding_mask,
|
|
||||||
memory_level_start_index=level_start_index,
|
|
||||||
memory_spatial_shapes=spatial_shapes,
|
|
||||||
memory_pos=pos,
|
|
||||||
self_attn_mask=tgt_mask,
|
|
||||||
cross_attn_mask=memory_mask,
|
|
||||||
)
|
|
||||||
if output.isnan().any() | output.isinf().any():
|
|
||||||
print(f"output layer_id {layer_id} is nan")
|
|
||||||
try:
|
|
||||||
num_nan = output.isnan().sum().item()
|
|
||||||
num_inf = output.isinf().sum().item()
|
|
||||||
print(f"num_nan {num_nan}, num_inf {num_inf}")
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
# if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
|
|
||||||
# iter update
|
|
||||||
if self.bbox_embed is not None:
|
|
||||||
# box_holder = self.bbox_embed(output)
|
|
||||||
# box_holder[..., :self.query_dim] += inverse_sigmoid(reference_points)
|
|
||||||
# new_reference_points = box_holder[..., :self.query_dim].sigmoid()
|
|
||||||
|
|
||||||
reference_before_sigmoid = inverse_sigmoid(reference_points)
|
|
||||||
delta_unsig = self.bbox_embed[layer_id](output)
|
|
||||||
outputs_unsig = delta_unsig + reference_before_sigmoid
|
|
||||||
new_reference_points = outputs_unsig.sigmoid()
|
|
||||||
|
|
||||||
reference_points = new_reference_points.detach()
|
|
||||||
# if layer_id != self.num_layers - 1:
|
|
||||||
ref_points.append(new_reference_points)
|
|
||||||
|
|
||||||
intermediate.append(self.norm(output))
|
|
||||||
|
|
||||||
return [
|
|
||||||
[itm_out.transpose(0, 1) for itm_out in intermediate],
|
|
||||||
[itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points],
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
class DeformableTransformerEncoderLayer(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
d_model=256,
|
|
||||||
d_ffn=1024,
|
|
||||||
dropout=0.1,
|
|
||||||
activation="relu",
|
|
||||||
n_levels=4,
|
|
||||||
n_heads=8,
|
|
||||||
n_points=4,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
# self attention
|
|
||||||
self.self_attn = MSDeformAttn(
|
|
||||||
embed_dim=d_model,
|
|
||||||
num_levels=n_levels,
|
|
||||||
num_heads=n_heads,
|
|
||||||
num_points=n_points,
|
|
||||||
batch_first=True,
|
|
||||||
)
|
|
||||||
self.dropout1 = nn.Dropout(dropout)
|
|
||||||
self.norm1 = nn.LayerNorm(d_model)
|
|
||||||
|
|
||||||
# ffn
|
|
||||||
self.linear1 = nn.Linear(d_model, d_ffn)
|
|
||||||
self.activation = _get_activation_fn(activation, d_model=d_ffn)
|
|
||||||
self.dropout2 = nn.Dropout(dropout)
|
|
||||||
self.linear2 = nn.Linear(d_ffn, d_model)
|
|
||||||
self.dropout3 = nn.Dropout(dropout)
|
|
||||||
self.norm2 = nn.LayerNorm(d_model)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def with_pos_embed(tensor, pos):
|
|
||||||
return tensor if pos is None else tensor + pos
|
|
||||||
|
|
||||||
def forward_ffn(self, src):
|
|
||||||
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
|
|
||||||
src = src + self.dropout3(src2)
|
|
||||||
src = self.norm2(src)
|
|
||||||
return src
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
src,
|
|
||||||
pos,
|
|
||||||
reference_points,
|
|
||||||
spatial_shapes,
|
|
||||||
level_start_index,
|
|
||||||
key_padding_mask=None,
|
|
||||||
):
|
|
||||||
# self attention
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
src2 = self.self_attn(
|
|
||||||
query=self.with_pos_embed(src, pos),
|
|
||||||
reference_points=reference_points,
|
|
||||||
value=src,
|
|
||||||
spatial_shapes=spatial_shapes,
|
|
||||||
level_start_index=level_start_index,
|
|
||||||
key_padding_mask=key_padding_mask,
|
|
||||||
)
|
|
||||||
src = src + self.dropout1(src2)
|
|
||||||
src = self.norm1(src)
|
|
||||||
|
|
||||||
# ffn
|
|
||||||
src = self.forward_ffn(src)
|
|
||||||
|
|
||||||
return src
|
|
||||||
|
|
||||||
|
|
||||||
class DeformableTransformerDecoderLayer(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
d_model=256,
|
|
||||||
d_ffn=1024,
|
|
||||||
dropout=0.1,
|
|
||||||
activation="relu",
|
|
||||||
n_levels=4,
|
|
||||||
n_heads=8,
|
|
||||||
n_points=4,
|
|
||||||
use_text_feat_guide=False,
|
|
||||||
use_text_cross_attention=False,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
# cross attention
|
|
||||||
self.cross_attn = MSDeformAttn(
|
|
||||||
embed_dim=d_model,
|
|
||||||
num_levels=n_levels,
|
|
||||||
num_heads=n_heads,
|
|
||||||
num_points=n_points,
|
|
||||||
batch_first=True,
|
|
||||||
)
|
|
||||||
self.dropout1 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
|
||||||
self.norm1 = nn.LayerNorm(d_model)
|
|
||||||
|
|
||||||
# cross attention text
|
|
||||||
if use_text_cross_attention:
|
|
||||||
self.ca_text = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
|
||||||
self.catext_dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
|
||||||
self.catext_norm = nn.LayerNorm(d_model)
|
|
||||||
|
|
||||||
# self attention
|
|
||||||
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
|
||||||
self.dropout2 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
|
||||||
self.norm2 = nn.LayerNorm(d_model)
|
|
||||||
|
|
||||||
# ffn
|
|
||||||
self.linear1 = nn.Linear(d_model, d_ffn)
|
|
||||||
self.activation = _get_activation_fn(activation, d_model=d_ffn, batch_dim=1)
|
|
||||||
self.dropout3 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
|
||||||
self.linear2 = nn.Linear(d_ffn, d_model)
|
|
||||||
self.dropout4 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
|
|
||||||
self.norm3 = nn.LayerNorm(d_model)
|
|
||||||
|
|
||||||
self.key_aware_proj = None
|
|
||||||
self.use_text_feat_guide = use_text_feat_guide
|
|
||||||
assert not use_text_feat_guide
|
|
||||||
self.use_text_cross_attention = use_text_cross_attention
|
|
||||||
|
|
||||||
def rm_self_attn_modules(self):
|
|
||||||
self.self_attn = None
|
|
||||||
self.dropout2 = None
|
|
||||||
self.norm2 = None
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def with_pos_embed(tensor, pos):
|
|
||||||
return tensor if pos is None else tensor + pos
|
|
||||||
|
|
||||||
def forward_ffn(self, tgt):
|
|
||||||
with torch.cuda.amp.autocast(enabled=False):
|
|
||||||
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
|
|
||||||
tgt = tgt + self.dropout4(tgt2)
|
|
||||||
tgt = self.norm3(tgt)
|
|
||||||
return tgt
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
# for tgt
|
|
||||||
tgt: Optional[Tensor], # nq, bs, d_model
|
|
||||||
tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos))
|
|
||||||
tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos)
|
|
||||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
|
||||||
tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4
|
|
||||||
memory_text: Optional[Tensor] = None, # bs, num_token, d_model
|
|
||||||
text_attention_mask: Optional[Tensor] = None, # bs, num_token
|
|
||||||
# for memory
|
|
||||||
memory: Optional[Tensor] = None, # hw, bs, d_model
|
|
||||||
memory_key_padding_mask: Optional[Tensor] = None,
|
|
||||||
memory_level_start_index: Optional[Tensor] = None, # num_levels
|
|
||||||
memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
|
|
||||||
memory_pos: Optional[Tensor] = None, # pos for memory
|
|
||||||
# sa
|
|
||||||
self_attn_mask: Optional[Tensor] = None, # mask used for self-attention
|
|
||||||
cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Input:
|
|
||||||
- tgt/tgt_query_pos: nq, bs, d_model
|
|
||||||
-
|
|
||||||
"""
|
|
||||||
assert cross_attn_mask is None
|
|
||||||
|
|
||||||
# self attention
|
|
||||||
if self.self_attn is not None:
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
q = k = self.with_pos_embed(tgt, tgt_query_pos)
|
|
||||||
tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0]
|
|
||||||
tgt = tgt + self.dropout2(tgt2)
|
|
||||||
tgt = self.norm2(tgt)
|
|
||||||
|
|
||||||
if self.use_text_cross_attention:
|
|
||||||
tgt2 = self.ca_text(
|
|
||||||
self.with_pos_embed(tgt, tgt_query_pos),
|
|
||||||
memory_text.transpose(0, 1),
|
|
||||||
memory_text.transpose(0, 1),
|
|
||||||
key_padding_mask=text_attention_mask,
|
|
||||||
)[0]
|
|
||||||
tgt = tgt + self.catext_dropout(tgt2)
|
|
||||||
tgt = self.catext_norm(tgt)
|
|
||||||
|
|
||||||
tgt2 = self.cross_attn(
|
|
||||||
query=self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1),
|
|
||||||
reference_points=tgt_reference_points.transpose(0, 1).contiguous(),
|
|
||||||
value=memory.transpose(0, 1),
|
|
||||||
spatial_shapes=memory_spatial_shapes,
|
|
||||||
level_start_index=memory_level_start_index,
|
|
||||||
key_padding_mask=memory_key_padding_mask,
|
|
||||||
).transpose(0, 1)
|
|
||||||
tgt = tgt + self.dropout1(tgt2)
|
|
||||||
tgt = self.norm1(tgt)
|
|
||||||
|
|
||||||
# ffn
|
|
||||||
tgt = self.forward_ffn(tgt)
|
|
||||||
|
|
||||||
return tgt
|
|
||||||
|
|
||||||
|
|
||||||
def build_transformer(args):
|
|
||||||
return Transformer(
|
|
||||||
d_model=args.hidden_dim,
|
|
||||||
dropout=args.dropout,
|
|
||||||
nhead=args.nheads,
|
|
||||||
num_queries=args.num_queries,
|
|
||||||
dim_feedforward=args.dim_feedforward,
|
|
||||||
num_encoder_layers=args.enc_layers,
|
|
||||||
num_decoder_layers=args.dec_layers,
|
|
||||||
normalize_before=args.pre_norm,
|
|
||||||
return_intermediate_dec=True,
|
|
||||||
query_dim=args.query_dim,
|
|
||||||
activation=args.transformer_activation,
|
|
||||||
num_patterns=args.num_patterns,
|
|
||||||
num_feature_levels=args.num_feature_levels,
|
|
||||||
enc_n_points=args.enc_n_points,
|
|
||||||
dec_n_points=args.dec_n_points,
|
|
||||||
learnable_tgt_init=True,
|
|
||||||
# two stage
|
|
||||||
two_stage_type=args.two_stage_type, # ['no', 'standard', 'early']
|
|
||||||
embed_init_tgt=args.embed_init_tgt,
|
|
||||||
use_text_enhancer=args.use_text_enhancer,
|
|
||||||
use_fusion_layer=args.use_fusion_layer,
|
|
||||||
use_checkpoint=args.use_checkpoint,
|
|
||||||
use_transformer_ckpt=args.use_transformer_ckpt,
|
|
||||||
use_text_cross_attention=args.use_text_cross_attention,
|
|
||||||
text_dropout=args.text_dropout,
|
|
||||||
fusion_dropout=args.fusion_dropout,
|
|
||||||
fusion_droppath=args.fusion_droppath,
|
|
||||||
)
|
|
@ -1,123 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
|
|
||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
||||||
"""
|
|
||||||
DETR Transformer class.
|
|
||||||
|
|
||||||
Copy-paste from torch.nn.Transformer with modifications:
|
|
||||||
* positional encodings are passed in MHattention
|
|
||||||
* extra LN at the end of encoder is removed
|
|
||||||
* decoder returns a stack of activations from all decoding layers
|
|
||||||
"""
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import Tensor, nn
|
|
||||||
|
|
||||||
from .utils import (
|
|
||||||
_get_activation_fn,
|
|
||||||
_get_clones,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class TextTransformer(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self, num_layers, d_model=256, nheads=8, dim_feedforward=2048, dropout=0.1
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.num_layers = num_layers
|
|
||||||
self.d_model = d_model
|
|
||||||
self.nheads = nheads
|
|
||||||
self.dim_feedforward = dim_feedforward
|
|
||||||
self.norm = None
|
|
||||||
|
|
||||||
single_encoder_layer = TransformerEncoderLayer(
|
|
||||||
d_model=d_model,
|
|
||||||
nhead=nheads,
|
|
||||||
dim_feedforward=dim_feedforward,
|
|
||||||
dropout=dropout,
|
|
||||||
)
|
|
||||||
self.layers = _get_clones(single_encoder_layer, num_layers)
|
|
||||||
|
|
||||||
def forward(self, memory_text: torch.Tensor, text_attention_mask: torch.Tensor):
|
|
||||||
"""
|
|
||||||
|
|
||||||
Args:
|
|
||||||
text_attention_mask: bs, num_token
|
|
||||||
memory_text: bs, num_token, d_model
|
|
||||||
|
|
||||||
Raises:
|
|
||||||
RuntimeError: _description_
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
output: bs, num_token, d_model
|
|
||||||
"""
|
|
||||||
|
|
||||||
output = memory_text.transpose(0, 1)
|
|
||||||
|
|
||||||
for layer in self.layers:
|
|
||||||
output = layer(output, src_key_padding_mask=text_attention_mask)
|
|
||||||
|
|
||||||
if self.norm is not None:
|
|
||||||
output = self.norm(output)
|
|
||||||
|
|
||||||
return output.transpose(0, 1)
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerEncoderLayer(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
d_model,
|
|
||||||
nhead,
|
|
||||||
dim_feedforward=2048,
|
|
||||||
dropout=0.1,
|
|
||||||
activation="relu",
|
|
||||||
normalize_before=False,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
|
||||||
# Implementation of Feedforward model
|
|
||||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
|
||||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
|
||||||
|
|
||||||
self.norm1 = nn.LayerNorm(d_model)
|
|
||||||
self.norm2 = nn.LayerNorm(d_model)
|
|
||||||
self.dropout1 = nn.Dropout(dropout)
|
|
||||||
self.dropout2 = nn.Dropout(dropout)
|
|
||||||
|
|
||||||
self.activation = _get_activation_fn(activation)
|
|
||||||
self.normalize_before = normalize_before
|
|
||||||
self.nhead = nhead
|
|
||||||
|
|
||||||
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
|
||||||
return tensor if pos is None else tensor + pos
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
src,
|
|
||||||
src_mask: Optional[Tensor] = None,
|
|
||||||
src_key_padding_mask: Optional[Tensor] = None,
|
|
||||||
pos: Optional[Tensor] = None,
|
|
||||||
):
|
|
||||||
# repeat attn mask
|
|
||||||
if src_mask.dim() == 3 and src_mask.shape[0] == src.shape[1]:
|
|
||||||
# bs, num_q, num_k
|
|
||||||
src_mask = src_mask.repeat(self.nhead, 1, 1)
|
|
||||||
|
|
||||||
q = k = self.with_pos_embed(src, pos)
|
|
||||||
|
|
||||||
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask)[0]
|
|
||||||
|
|
||||||
# src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
|
||||||
src = src + self.dropout1(src2)
|
|
||||||
src = self.norm1(src)
|
|
||||||
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
|
||||||
src = src + self.dropout2(src2)
|
|
||||||
src = self.norm2(src)
|
|
||||||
return src
|
|
@ -1,299 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
|
|
||||||
import copy
|
|
||||||
import math
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from torch import Tensor, nn
|
|
||||||
|
|
||||||
|
|
||||||
def _get_clones(module, N, layer_share=False):
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
if layer_share:
|
|
||||||
return nn.ModuleList([module for i in range(N)])
|
|
||||||
else:
|
|
||||||
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
|
||||||
|
|
||||||
|
|
||||||
def get_sine_pos_embed(
|
|
||||||
pos_tensor: torch.Tensor,
|
|
||||||
num_pos_feats: int = 128,
|
|
||||||
temperature: int = 10000,
|
|
||||||
exchange_xy: bool = True,
|
|
||||||
):
|
|
||||||
"""generate sine position embedding from a position tensor
|
|
||||||
Args:
|
|
||||||
pos_tensor (torch.Tensor): shape: [..., n].
|
|
||||||
num_pos_feats (int): projected shape for each float in the tensor.
|
|
||||||
temperature (int): temperature in the sine/cosine function.
|
|
||||||
exchange_xy (bool, optional): exchange pos x and pos y. \
|
|
||||||
For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True.
|
|
||||||
Returns:
|
|
||||||
pos_embed (torch.Tensor): shape: [..., n*num_pos_feats].
|
|
||||||
"""
|
|
||||||
scale = 2 * math.pi
|
|
||||||
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
|
|
||||||
dim_t = temperature ** (
|
|
||||||
2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats
|
|
||||||
)
|
|
||||||
|
|
||||||
def sine_func(x: torch.Tensor):
|
|
||||||
sin_x = x * scale / dim_t
|
|
||||||
sin_x = torch.stack(
|
|
||||||
(sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3
|
|
||||||
).flatten(2)
|
|
||||||
return sin_x
|
|
||||||
|
|
||||||
pos_res = [
|
|
||||||
sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)
|
|
||||||
]
|
|
||||||
if exchange_xy:
|
|
||||||
pos_res[0], pos_res[1] = pos_res[1], pos_res[0]
|
|
||||||
pos_res = torch.cat(pos_res, dim=-1)
|
|
||||||
return pos_res
|
|
||||||
|
|
||||||
|
|
||||||
def gen_encoder_output_proposals(
|
|
||||||
memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Input:
|
|
||||||
- memory: bs, \sum{hw}, d_model
|
|
||||||
- memory_padding_mask: bs, \sum{hw}
|
|
||||||
- spatial_shapes: nlevel, 2
|
|
||||||
- learnedwh: 2
|
|
||||||
Output:
|
|
||||||
- output_memory: bs, \sum{hw}, d_model
|
|
||||||
- output_proposals: bs, \sum{hw}, 4
|
|
||||||
"""
|
|
||||||
N_, S_, C_ = memory.shape
|
|
||||||
proposals = []
|
|
||||||
_cur = 0
|
|
||||||
for lvl, (H_, W_) in enumerate(spatial_shapes):
|
|
||||||
mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view(
|
|
||||||
N_, H_, W_, 1
|
|
||||||
)
|
|
||||||
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
|
|
||||||
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
|
|
||||||
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
|
|
||||||
grid_y, grid_x = torch.meshgrid(
|
|
||||||
torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
|
|
||||||
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device),
|
|
||||||
)
|
|
||||||
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2
|
|
||||||
|
|
||||||
scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(
|
|
||||||
N_, 1, 1, 2
|
|
||||||
)
|
|
||||||
grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
|
|
||||||
|
|
||||||
if learnedwh is not None:
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl)
|
|
||||||
else:
|
|
||||||
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
|
|
||||||
|
|
||||||
# scale = torch.cat([W_[None].unsqueeze(-1), H_[None].unsqueeze(-1)], 1).view(1, 1, 1, 2).repeat(N_, 1, 1, 1)
|
|
||||||
# grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
|
|
||||||
# wh = torch.ones_like(grid) / scale
|
|
||||||
proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
|
|
||||||
proposals.append(proposal)
|
|
||||||
_cur += H_ * W_
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
output_proposals = torch.cat(proposals, 1)
|
|
||||||
output_proposals_valid = (
|
|
||||||
(output_proposals > 0.01) & (output_proposals < 0.99)
|
|
||||||
).all(-1, keepdim=True)
|
|
||||||
output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid
|
|
||||||
output_proposals = output_proposals.masked_fill(
|
|
||||||
memory_padding_mask.unsqueeze(-1), float("inf")
|
|
||||||
)
|
|
||||||
output_proposals = output_proposals.masked_fill(
|
|
||||||
~output_proposals_valid, float("inf")
|
|
||||||
)
|
|
||||||
|
|
||||||
output_memory = memory
|
|
||||||
output_memory = output_memory.masked_fill(
|
|
||||||
memory_padding_mask.unsqueeze(-1), float(0)
|
|
||||||
)
|
|
||||||
output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
|
|
||||||
|
|
||||||
# output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
|
|
||||||
# output_memory = output_memory.masked_fill(~output_proposals_valid, float('inf'))
|
|
||||||
|
|
||||||
return output_memory, output_proposals
|
|
||||||
|
|
||||||
|
|
||||||
class RandomBoxPerturber:
|
|
||||||
def __init__(
|
|
||||||
self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2
|
|
||||||
) -> None:
|
|
||||||
self.noise_scale = torch.Tensor(
|
|
||||||
[x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale]
|
|
||||||
)
|
|
||||||
|
|
||||||
def __call__(self, refanchors: Tensor) -> Tensor:
|
|
||||||
nq, bs, query_dim = refanchors.shape
|
|
||||||
device = refanchors.device
|
|
||||||
|
|
||||||
noise_raw = torch.rand_like(refanchors)
|
|
||||||
noise_scale = self.noise_scale.to(device)[:query_dim]
|
|
||||||
|
|
||||||
new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale)
|
|
||||||
return new_refanchors.clamp_(0, 1)
|
|
||||||
|
|
||||||
|
|
||||||
def sigmoid_focal_loss(
|
|
||||||
inputs,
|
|
||||||
targets,
|
|
||||||
num_boxes,
|
|
||||||
alpha: float = 0.25,
|
|
||||||
gamma: float = 2,
|
|
||||||
no_reduction=False,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
|
|
||||||
Args:
|
|
||||||
inputs: A float tensor of arbitrary shape.
|
|
||||||
The predictions for each example.
|
|
||||||
targets: A float tensor with the same shape as inputs. Stores the binary
|
|
||||||
classification label for each element in inputs
|
|
||||||
(0 for the negative class and 1 for the positive class).
|
|
||||||
alpha: (optional) Weighting factor in range (0,1) to balance
|
|
||||||
positive vs negative examples. Default = -1 (no weighting).
|
|
||||||
gamma: Exponent of the modulating factor (1 - p_t) to
|
|
||||||
balance easy vs hard examples.
|
|
||||||
Returns:
|
|
||||||
Loss tensor
|
|
||||||
"""
|
|
||||||
prob = inputs.sigmoid()
|
|
||||||
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
|
||||||
p_t = prob * targets + (1 - prob) * (1 - targets)
|
|
||||||
loss = ce_loss * ((1 - p_t) ** gamma)
|
|
||||||
|
|
||||||
if alpha >= 0:
|
|
||||||
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
|
|
||||||
loss = alpha_t * loss
|
|
||||||
|
|
||||||
if no_reduction:
|
|
||||||
return loss
|
|
||||||
|
|
||||||
return loss.mean(1).sum() / num_boxes
|
|
||||||
|
|
||||||
|
|
||||||
class MLP(nn.Module):
|
|
||||||
"""Very simple multi-layer perceptron (also called FFN)"""
|
|
||||||
|
|
||||||
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
|
||||||
super().__init__()
|
|
||||||
self.num_layers = num_layers
|
|
||||||
h = [hidden_dim] * (num_layers - 1)
|
|
||||||
self.layers = nn.ModuleList(
|
|
||||||
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
for i, layer in enumerate(self.layers):
|
|
||||||
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def _get_activation_fn(activation, d_model=256, batch_dim=0):
|
|
||||||
"""Return an activation function given a string"""
|
|
||||||
if activation == "relu":
|
|
||||||
return F.relu
|
|
||||||
if activation == "gelu":
|
|
||||||
return F.gelu
|
|
||||||
if activation == "glu":
|
|
||||||
return F.glu
|
|
||||||
if activation == "prelu":
|
|
||||||
return nn.PReLU()
|
|
||||||
if activation == "selu":
|
|
||||||
return F.selu
|
|
||||||
|
|
||||||
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
|
||||||
|
|
||||||
|
|
||||||
def gen_sineembed_for_position(pos_tensor):
|
|
||||||
# n_query, bs, _ = pos_tensor.size()
|
|
||||||
# sineembed_tensor = torch.zeros(n_query, bs, 256)
|
|
||||||
scale = 2 * math.pi
|
|
||||||
dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device)
|
|
||||||
dim_t = 10000 ** (2 * (torch.div(dim_t, 2, rounding_mode="floor")) / 128)
|
|
||||||
x_embed = pos_tensor[:, :, 0] * scale
|
|
||||||
y_embed = pos_tensor[:, :, 1] * scale
|
|
||||||
pos_x = x_embed[:, :, None] / dim_t
|
|
||||||
pos_y = y_embed[:, :, None] / dim_t
|
|
||||||
pos_x = torch.stack(
|
|
||||||
(pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3
|
|
||||||
).flatten(2)
|
|
||||||
pos_y = torch.stack(
|
|
||||||
(pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3
|
|
||||||
).flatten(2)
|
|
||||||
if pos_tensor.size(-1) == 2:
|
|
||||||
pos = torch.cat((pos_y, pos_x), dim=2)
|
|
||||||
elif pos_tensor.size(-1) == 4:
|
|
||||||
w_embed = pos_tensor[:, :, 2] * scale
|
|
||||||
pos_w = w_embed[:, :, None] / dim_t
|
|
||||||
pos_w = torch.stack(
|
|
||||||
(pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3
|
|
||||||
).flatten(2)
|
|
||||||
|
|
||||||
h_embed = pos_tensor[:, :, 3] * scale
|
|
||||||
pos_h = h_embed[:, :, None] / dim_t
|
|
||||||
pos_h = torch.stack(
|
|
||||||
(pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3
|
|
||||||
).flatten(2)
|
|
||||||
|
|
||||||
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
|
|
||||||
else:
|
|
||||||
raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
|
|
||||||
return pos
|
|
||||||
|
|
||||||
|
|
||||||
class ContrastiveEmbed(nn.Module):
|
|
||||||
def __init__(self, max_text_len=256):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
max_text_len: max length of text.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
self.max_text_len = max_text_len
|
|
||||||
|
|
||||||
def forward(self, x, text_dict):
|
|
||||||
"""_summary_
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x (_type_): _description_
|
|
||||||
text_dict (_type_): _description_
|
|
||||||
{
|
|
||||||
'encoded_text': encoded_text, # bs, 195, d_model
|
|
||||||
'text_token_mask': text_token_mask, # bs, 195
|
|
||||||
# True for used tokens. False for padding tokens
|
|
||||||
}
|
|
||||||
Returns:
|
|
||||||
_type_: _description_
|
|
||||||
"""
|
|
||||||
assert isinstance(text_dict, dict)
|
|
||||||
|
|
||||||
y = text_dict["encoded_text"]
|
|
||||||
text_token_mask = text_dict["text_token_mask"]
|
|
||||||
|
|
||||||
res = x @ y.transpose(-1, -2)
|
|
||||||
res.masked_fill_(~text_token_mask[:, None, :], float("-inf"))
|
|
||||||
|
|
||||||
# padding to max_text_len
|
|
||||||
new_res = torch.full(
|
|
||||||
(*res.shape[:-1], self.max_text_len), float("-inf"), device=res.device
|
|
||||||
)
|
|
||||||
new_res[..., : res.shape[-1]] = res
|
|
||||||
|
|
||||||
return new_res
|
|
@ -1,17 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
||||||
|
|
||||||
|
|
||||||
def build_model(args):
|
|
||||||
# we use register to maintain models from catdet6 on.
|
|
||||||
from .registry import MODULE_BUILD_FUNCS
|
|
||||||
|
|
||||||
assert args.modelname in MODULE_BUILD_FUNCS._module_dict
|
|
||||||
build_func = MODULE_BUILD_FUNCS.get(args.modelname)
|
|
||||||
model = build_func(args)
|
|
||||||
return model
|
|
@ -1,68 +0,0 @@
|
|||||||
# ------------------------------------------------------------------------
|
|
||||||
# Grounding DINO
|
|
||||||
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
||||||
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
||||||
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
||||||
# ------------------------------------------------------------------------
|
|
||||||
# -*- coding: utf-8 -*-
|
|
||||||
# @Author: Yihao Chen
|
|
||||||
# @Date: 2021-08-16 16:03:17
|
|
||||||
# @Last Modified by: Shilong Liu
|
|
||||||
# @Last Modified time: 2022-01-23 15:26
|
|
||||||
# modified from mmcv
|
|
||||||
|
|
||||||
import inspect
|
|
||||||
from functools import partial
|
|
||||||
|
|
||||||
|
|
||||||
class Registry(object):
|
|
||||||
def __init__(self, name):
|
|
||||||
self._name = name
|
|
||||||
self._module_dict = dict()
|
|
||||||
|
|
||||||
def __repr__(self):
|
|
||||||
format_str = self.__class__.__name__ + "(name={}, items={})".format(
|
|
||||||
self._name, list(self._module_dict.keys())
|
|
||||||
)
|
|
||||||
return format_str
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return len(self._module_dict)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def name(self):
|
|
||||||
return self._name
|
|
||||||
|
|
||||||
@property
|
|
||||||
def module_dict(self):
|
|
||||||
return self._module_dict
|
|
||||||
|
|
||||||
def get(self, key):
|
|
||||||
return self._module_dict.get(key, None)
|
|
||||||
|
|
||||||
def registe_with_name(self, module_name=None, force=False):
|
|
||||||
return partial(self.register, module_name=module_name, force=force)
|
|
||||||
|
|
||||||
def register(self, module_build_function, module_name=None, force=False):
|
|
||||||
"""Register a module build function.
|
|
||||||
Args:
|
|
||||||
module (:obj:`nn.Module`): Module to be registered.
|
|
||||||
"""
|
|
||||||
if not inspect.isfunction(module_build_function):
|
|
||||||
raise TypeError(
|
|
||||||
"module_build_function must be a function, but got {}".format(
|
|
||||||
type(module_build_function)
|
|
||||||
)
|
|
||||||
)
|
|
||||||
if module_name is None:
|
|
||||||
module_name = module_build_function.__name__
|
|
||||||
if not force and module_name in self._module_dict:
|
|
||||||
raise KeyError(
|
|
||||||
"{} is already registered in {}".format(module_name, self.name)
|
|
||||||
)
|
|
||||||
self._module_dict[module_name] = module_build_function
|
|
||||||
|
|
||||||
return module_build_function
|
|
||||||
|
|
||||||
|
|
||||||
MODULE_BUILD_FUNCS = Registry("model build functions")
|
|
@ -1 +0,0 @@
|
|||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
@ -1,140 +0,0 @@
|
|||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
||||||
"""
|
|
||||||
Utilities for bounding box manipulation and GIoU.
|
|
||||||
"""
|
|
||||||
import torch
|
|
||||||
from torchvision.ops.boxes import box_area
|
|
||||||
|
|
||||||
|
|
||||||
def box_cxcywh_to_xyxy(x):
|
|
||||||
x_c, y_c, w, h = x.unbind(-1)
|
|
||||||
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
|
|
||||||
return torch.stack(b, dim=-1)
|
|
||||||
|
|
||||||
|
|
||||||
def box_xyxy_to_cxcywh(x):
|
|
||||||
x0, y0, x1, y1 = x.unbind(-1)
|
|
||||||
b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)]
|
|
||||||
return torch.stack(b, dim=-1)
|
|
||||||
|
|
||||||
|
|
||||||
# modified from torchvision to also return the union
|
|
||||||
def box_iou(boxes1, boxes2):
|
|
||||||
area1 = box_area(boxes1)
|
|
||||||
area2 = box_area(boxes2)
|
|
||||||
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
|
|
||||||
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
|
|
||||||
|
|
||||||
wh = (rb - lt).clamp(min=0) # [N,M,2]
|
|
||||||
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
|
|
||||||
|
|
||||||
union = area1[:, None] + area2 - inter
|
|
||||||
|
|
||||||
iou = inter / (union + 1e-6)
|
|
||||||
return iou, union
|
|
||||||
|
|
||||||
|
|
||||||
def generalized_box_iou(boxes1, boxes2):
|
|
||||||
"""
|
|
||||||
Generalized IoU from https://giou.stanford.edu/
|
|
||||||
|
|
||||||
The boxes should be in [x0, y0, x1, y1] format
|
|
||||||
|
|
||||||
Returns a [N, M] pairwise matrix, where N = len(boxes1)
|
|
||||||
and M = len(boxes2)
|
|
||||||
"""
|
|
||||||
# degenerate boxes gives inf / nan results
|
|
||||||
# so do an early check
|
|
||||||
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
|
|
||||||
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
|
|
||||||
# except:
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
iou, union = box_iou(boxes1, boxes2)
|
|
||||||
|
|
||||||
lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
|
|
||||||
rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
|
|
||||||
|
|
||||||
wh = (rb - lt).clamp(min=0) # [N,M,2]
|
|
||||||
area = wh[:, :, 0] * wh[:, :, 1]
|
|
||||||
|
|
||||||
return iou - (area - union) / (area + 1e-6)
|
|
||||||
|
|
||||||
|
|
||||||
# modified from torchvision to also return the union
|
|
||||||
def box_iou_pairwise(boxes1, boxes2):
|
|
||||||
area1 = box_area(boxes1)
|
|
||||||
area2 = box_area(boxes2)
|
|
||||||
|
|
||||||
lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # [N,2]
|
|
||||||
rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # [N,2]
|
|
||||||
|
|
||||||
wh = (rb - lt).clamp(min=0) # [N,2]
|
|
||||||
inter = wh[:, 0] * wh[:, 1] # [N]
|
|
||||||
|
|
||||||
union = area1 + area2 - inter
|
|
||||||
|
|
||||||
iou = inter / union
|
|
||||||
return iou, union
|
|
||||||
|
|
||||||
|
|
||||||
def generalized_box_iou_pairwise(boxes1, boxes2):
|
|
||||||
"""
|
|
||||||
Generalized IoU from https://giou.stanford.edu/
|
|
||||||
|
|
||||||
Input:
|
|
||||||
- boxes1, boxes2: N,4
|
|
||||||
Output:
|
|
||||||
- giou: N, 4
|
|
||||||
"""
|
|
||||||
# degenerate boxes gives inf / nan results
|
|
||||||
# so do an early check
|
|
||||||
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
|
|
||||||
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
|
|
||||||
assert boxes1.shape == boxes2.shape
|
|
||||||
iou, union = box_iou_pairwise(boxes1, boxes2) # N, 4
|
|
||||||
|
|
||||||
lt = torch.min(boxes1[:, :2], boxes2[:, :2])
|
|
||||||
rb = torch.max(boxes1[:, 2:], boxes2[:, 2:])
|
|
||||||
|
|
||||||
wh = (rb - lt).clamp(min=0) # [N,2]
|
|
||||||
area = wh[:, 0] * wh[:, 1]
|
|
||||||
|
|
||||||
return iou - (area - union) / area
|
|
||||||
|
|
||||||
|
|
||||||
def masks_to_boxes(masks):
|
|
||||||
"""Compute the bounding boxes around the provided masks
|
|
||||||
|
|
||||||
The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
|
|
||||||
|
|
||||||
Returns a [N, 4] tensors, with the boxes in xyxy format
|
|
||||||
"""
|
|
||||||
if masks.numel() == 0:
|
|
||||||
return torch.zeros((0, 4), device=masks.device)
|
|
||||||
|
|
||||||
h, w = masks.shape[-2:]
|
|
||||||
|
|
||||||
y = torch.arange(0, h, dtype=torch.float)
|
|
||||||
x = torch.arange(0, w, dtype=torch.float)
|
|
||||||
y, x = torch.meshgrid(y, x)
|
|
||||||
|
|
||||||
x_mask = masks * x.unsqueeze(0)
|
|
||||||
x_max = x_mask.flatten(1).max(-1)[0]
|
|
||||||
x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
|
|
||||||
|
|
||||||
y_mask = masks * y.unsqueeze(0)
|
|
||||||
y_max = y_mask.flatten(1).max(-1)[0]
|
|
||||||
y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
|
|
||||||
|
|
||||||
return torch.stack([x_min, y_min, x_max, y_max], 1)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
x = torch.rand(5, 4)
|
|
||||||
y = torch.rand(3, 4)
|
|
||||||
iou, union = box_iou(x, y)
|
|
||||||
import ipdb
|
|
||||||
|
|
||||||
ipdb.set_trace()
|
|
@ -1,32 +0,0 @@
|
|||||||
from transformers import AutoTokenizer, BertModel, RobertaModel
|
|
||||||
import os
|
|
||||||
|
|
||||||
|
|
||||||
def get_tokenlizer(text_encoder_type):
|
|
||||||
if not isinstance(text_encoder_type, str):
|
|
||||||
# print("text_encoder_type is not a str")
|
|
||||||
if hasattr(text_encoder_type, "text_encoder_type"):
|
|
||||||
text_encoder_type = text_encoder_type.text_encoder_type
|
|
||||||
elif text_encoder_type.get("text_encoder_type", False):
|
|
||||||
text_encoder_type = text_encoder_type.get("text_encoder_type")
|
|
||||||
elif os.path.isdir(text_encoder_type) and os.path.exists(text_encoder_type):
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
"Unknown type of text_encoder_type: {}".format(type(text_encoder_type))
|
|
||||||
)
|
|
||||||
print("final text_encoder_type: {}".format(text_encoder_type))
|
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(text_encoder_type)
|
|
||||||
return tokenizer
|
|
||||||
|
|
||||||
|
|
||||||
def get_pretrained_language_model(text_encoder_type):
|
|
||||||
if text_encoder_type == "bert-base-uncased" or (
|
|
||||||
os.path.isdir(text_encoder_type) and os.path.exists(text_encoder_type)
|
|
||||||
):
|
|
||||||
return BertModel.from_pretrained(text_encoder_type)
|
|
||||||
if text_encoder_type == "roberta-base":
|
|
||||||
return RobertaModel.from_pretrained(text_encoder_type)
|
|
||||||
|
|
||||||
raise ValueError("Unknown text_encoder_type {}".format(text_encoder_type))
|
|
@ -1,268 +0,0 @@
|
|||||||
from typing import Tuple, List
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
import supervision as sv
|
|
||||||
import torch
|
|
||||||
from PIL import Image
|
|
||||||
from torchvision.ops import box_convert
|
|
||||||
import bisect
|
|
||||||
|
|
||||||
import groundingdino.datasets.transforms as T
|
|
||||||
from groundingdino.models import build_model
|
|
||||||
from groundingdino.util.misc import clean_state_dict
|
|
||||||
from groundingdino.util.slconfig import SLConfig
|
|
||||||
from groundingdino.util.utils import get_phrases_from_posmap
|
|
||||||
|
|
||||||
# ----------------------------------------------------------------------------------------------------------------------
|
|
||||||
# OLD API
|
|
||||||
# ----------------------------------------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
|
|
||||||
def preprocess_caption(caption: str) -> str:
|
|
||||||
result = caption.lower().strip()
|
|
||||||
if result.endswith("."):
|
|
||||||
return result
|
|
||||||
return result + "."
|
|
||||||
|
|
||||||
|
|
||||||
def load_model(
|
|
||||||
model_config_path: str, model_checkpoint_path: str, device: str = "cuda"
|
|
||||||
):
|
|
||||||
args = SLConfig.fromfile(model_config_path)
|
|
||||||
args.device = device
|
|
||||||
model = build_model(args)
|
|
||||||
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
|
||||||
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
|
||||||
model.eval()
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
|
|
||||||
transform = T.Compose(
|
|
||||||
[
|
|
||||||
T.RandomResize([800], max_size=1333),
|
|
||||||
T.ToTensor(),
|
|
||||||
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
image_source = Image.open(image_path).convert("RGB")
|
|
||||||
image = np.asarray(image_source)
|
|
||||||
image_transformed, _ = transform(image_source, None)
|
|
||||||
return image, image_transformed
|
|
||||||
|
|
||||||
|
|
||||||
def predict(
|
|
||||||
model,
|
|
||||||
image: torch.Tensor,
|
|
||||||
caption: str,
|
|
||||||
box_threshold: float,
|
|
||||||
text_threshold: float,
|
|
||||||
device: str = "cuda",
|
|
||||||
remove_combined: bool = False,
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
|
|
||||||
caption = preprocess_caption(caption=caption)
|
|
||||||
|
|
||||||
model = model.to(device)
|
|
||||||
image = image.to(device)
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
outputs = model(image[None], captions=[caption])
|
|
||||||
|
|
||||||
prediction_logits = (
|
|
||||||
outputs["pred_logits"].cpu().sigmoid()[0]
|
|
||||||
) # prediction_logits.shape = (nq, 256)
|
|
||||||
prediction_boxes = outputs["pred_boxes"].cpu()[
|
|
||||||
0
|
|
||||||
] # prediction_boxes.shape = (nq, 4)
|
|
||||||
|
|
||||||
mask = prediction_logits.max(dim=1)[0] > box_threshold
|
|
||||||
logits = prediction_logits[mask] # logits.shape = (n, 256)
|
|
||||||
boxes = prediction_boxes[mask] # boxes.shape = (n, 4)
|
|
||||||
|
|
||||||
tokenizer = model.tokenizer
|
|
||||||
tokenized = tokenizer(caption)
|
|
||||||
|
|
||||||
if remove_combined:
|
|
||||||
sep_idx = [
|
|
||||||
i
|
|
||||||
for i in range(len(tokenized["input_ids"]))
|
|
||||||
if tokenized["input_ids"][i] in [101, 102, 1012]
|
|
||||||
]
|
|
||||||
|
|
||||||
phrases = []
|
|
||||||
for logit in logits:
|
|
||||||
max_idx = logit.argmax()
|
|
||||||
insert_idx = bisect.bisect_left(sep_idx, max_idx)
|
|
||||||
right_idx = sep_idx[insert_idx]
|
|
||||||
left_idx = sep_idx[insert_idx - 1]
|
|
||||||
phrases.append(
|
|
||||||
get_phrases_from_posmap(
|
|
||||||
logit > text_threshold, tokenized, tokenizer, left_idx, right_idx
|
|
||||||
).replace(".", "")
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
phrases = [
|
|
||||||
get_phrases_from_posmap(
|
|
||||||
logit > text_threshold, tokenized, tokenizer
|
|
||||||
).replace(".", "")
|
|
||||||
for logit in logits
|
|
||||||
]
|
|
||||||
|
|
||||||
return boxes, logits.max(dim=1)[0], phrases
|
|
||||||
|
|
||||||
|
|
||||||
def annotate(
|
|
||||||
image_source: np.ndarray,
|
|
||||||
boxes: torch.Tensor,
|
|
||||||
logits: torch.Tensor,
|
|
||||||
phrases: List[str],
|
|
||||||
) -> np.ndarray:
|
|
||||||
h, w, _ = image_source.shape
|
|
||||||
boxes = boxes * torch.Tensor([w, h, w, h])
|
|
||||||
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
|
||||||
detections = sv.Detections(xyxy=xyxy)
|
|
||||||
|
|
||||||
labels = [f"{phrase} {logit:.2f}" for phrase, logit in zip(phrases, logits)]
|
|
||||||
|
|
||||||
box_annotator = sv.BoxAnnotator()
|
|
||||||
annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
|
|
||||||
annotated_frame = box_annotator.annotate(
|
|
||||||
scene=annotated_frame, detections=detections, labels=labels
|
|
||||||
)
|
|
||||||
return annotated_frame
|
|
||||||
|
|
||||||
|
|
||||||
# ----------------------------------------------------------------------------------------------------------------------
|
|
||||||
# NEW API
|
|
||||||
# ----------------------------------------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
|
|
||||||
class Model:
|
|
||||||
def __init__(
|
|
||||||
self, model_config_path: str, model_checkpoint_path: str, device: str = "cuda"
|
|
||||||
):
|
|
||||||
self.model = load_model(
|
|
||||||
model_config_path=model_config_path,
|
|
||||||
model_checkpoint_path=model_checkpoint_path,
|
|
||||||
device=device,
|
|
||||||
).to(device)
|
|
||||||
self.device = device
|
|
||||||
|
|
||||||
def predict_with_caption(
|
|
||||||
self,
|
|
||||||
image: np.ndarray,
|
|
||||||
caption: str,
|
|
||||||
box_threshold: float = 0.35,
|
|
||||||
text_threshold: float = 0.25,
|
|
||||||
) -> Tuple[sv.Detections, List[str]]:
|
|
||||||
"""
|
|
||||||
import cv2
|
|
||||||
|
|
||||||
image = cv2.imread(IMAGE_PATH)
|
|
||||||
|
|
||||||
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
|
|
||||||
detections, labels = model.predict_with_caption(
|
|
||||||
image=image,
|
|
||||||
caption=caption,
|
|
||||||
box_threshold=BOX_THRESHOLD,
|
|
||||||
text_threshold=TEXT_THRESHOLD
|
|
||||||
)
|
|
||||||
|
|
||||||
import supervision as sv
|
|
||||||
|
|
||||||
box_annotator = sv.BoxAnnotator()
|
|
||||||
annotated_image = box_annotator.annotate(scene=image, detections=detections, labels=labels)
|
|
||||||
"""
|
|
||||||
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
|
|
||||||
boxes, logits, phrases = predict(
|
|
||||||
model=self.model,
|
|
||||||
image=processed_image,
|
|
||||||
caption=caption,
|
|
||||||
box_threshold=box_threshold,
|
|
||||||
text_threshold=text_threshold,
|
|
||||||
device=self.device,
|
|
||||||
)
|
|
||||||
source_h, source_w, _ = image.shape
|
|
||||||
detections = Model.post_process_result(
|
|
||||||
source_h=source_h, source_w=source_w, boxes=boxes, logits=logits
|
|
||||||
)
|
|
||||||
return detections, phrases
|
|
||||||
|
|
||||||
def predict_with_classes(
|
|
||||||
self,
|
|
||||||
image: np.ndarray,
|
|
||||||
classes: List[str],
|
|
||||||
box_threshold: float,
|
|
||||||
text_threshold: float,
|
|
||||||
) -> sv.Detections:
|
|
||||||
"""
|
|
||||||
import cv2
|
|
||||||
|
|
||||||
image = cv2.imread(IMAGE_PATH)
|
|
||||||
|
|
||||||
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
|
|
||||||
detections = model.predict_with_classes(
|
|
||||||
image=image,
|
|
||||||
classes=CLASSES,
|
|
||||||
box_threshold=BOX_THRESHOLD,
|
|
||||||
text_threshold=TEXT_THRESHOLD
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
import supervision as sv
|
|
||||||
|
|
||||||
box_annotator = sv.BoxAnnotator()
|
|
||||||
annotated_image = box_annotator.annotate(scene=image, detections=detections)
|
|
||||||
"""
|
|
||||||
caption = ". ".join(classes)
|
|
||||||
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
|
|
||||||
boxes, logits, phrases = predict(
|
|
||||||
model=self.model,
|
|
||||||
image=processed_image,
|
|
||||||
caption=caption,
|
|
||||||
box_threshold=box_threshold,
|
|
||||||
text_threshold=text_threshold,
|
|
||||||
device=self.device,
|
|
||||||
)
|
|
||||||
source_h, source_w, _ = image.shape
|
|
||||||
detections = Model.post_process_result(
|
|
||||||
source_h=source_h, source_w=source_w, boxes=boxes, logits=logits
|
|
||||||
)
|
|
||||||
class_id = Model.phrases2classes(phrases=phrases, classes=classes)
|
|
||||||
detections.class_id = class_id
|
|
||||||
return detections
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def preprocess_image(image_bgr: np.ndarray) -> torch.Tensor:
|
|
||||||
transform = T.Compose(
|
|
||||||
[
|
|
||||||
T.RandomResize([800], max_size=1333),
|
|
||||||
T.ToTensor(),
|
|
||||||
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
image_pillow = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
|
|
||||||
image_transformed, _ = transform(image_pillow, None)
|
|
||||||
return image_transformed
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def post_process_result(
|
|
||||||
source_h: int, source_w: int, boxes: torch.Tensor, logits: torch.Tensor
|
|
||||||
) -> sv.Detections:
|
|
||||||
boxes = boxes * torch.Tensor([source_w, source_h, source_w, source_h])
|
|
||||||
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
|
||||||
confidence = logits.numpy()
|
|
||||||
return sv.Detections(xyxy=xyxy, confidence=confidence)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def phrases2classes(phrases: List[str], classes: List[str]) -> np.ndarray:
|
|
||||||
class_ids = []
|
|
||||||
for phrase in phrases:
|
|
||||||
for class_ in classes:
|
|
||||||
if class_ in phrase:
|
|
||||||
class_ids.append(classes.index(class_))
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
class_ids.append(None)
|
|
||||||
return np.array(class_ids)
|
|
@ -1,95 +0,0 @@
|
|||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
||||||
import functools
|
|
||||||
import logging
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
from termcolor import colored
|
|
||||||
|
|
||||||
|
|
||||||
class _ColorfulFormatter(logging.Formatter):
|
|
||||||
def __init__(self, *args, **kwargs):
|
|
||||||
self._root_name = kwargs.pop("root_name") + "."
|
|
||||||
self._abbrev_name = kwargs.pop("abbrev_name", "")
|
|
||||||
if len(self._abbrev_name):
|
|
||||||
self._abbrev_name = self._abbrev_name + "."
|
|
||||||
super(_ColorfulFormatter, self).__init__(*args, **kwargs)
|
|
||||||
|
|
||||||
def formatMessage(self, record):
|
|
||||||
record.name = record.name.replace(self._root_name, self._abbrev_name)
|
|
||||||
log = super(_ColorfulFormatter, self).formatMessage(record)
|
|
||||||
if record.levelno == logging.WARNING:
|
|
||||||
prefix = colored("WARNING", "red", attrs=["blink"])
|
|
||||||
elif record.levelno == logging.ERROR or record.levelno == logging.CRITICAL:
|
|
||||||
prefix = colored("ERROR", "red", attrs=["blink", "underline"])
|
|
||||||
else:
|
|
||||||
return log
|
|
||||||
return prefix + " " + log
|
|
||||||
|
|
||||||
|
|
||||||
# so that calling setup_logger multiple times won't add many handlers
|
|
||||||
@functools.lru_cache()
|
|
||||||
def setup_logger(
|
|
||||||
output=None, distributed_rank=0, *, color=True, name="imagenet", abbrev_name=None
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Initialize the detectron2 logger and set its verbosity level to "INFO".
|
|
||||||
|
|
||||||
Args:
|
|
||||||
output (str): a file name or a directory to save log. If None, will not save log file.
|
|
||||||
If ends with ".txt" or ".log", assumed to be a file name.
|
|
||||||
Otherwise, logs will be saved to `output/log.txt`.
|
|
||||||
name (str): the root module name of this logger
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
logging.Logger: a logger
|
|
||||||
"""
|
|
||||||
logger = logging.getLogger(name)
|
|
||||||
logger.setLevel(logging.DEBUG)
|
|
||||||
logger.propagate = False
|
|
||||||
|
|
||||||
if abbrev_name is None:
|
|
||||||
abbrev_name = name
|
|
||||||
|
|
||||||
plain_formatter = logging.Formatter(
|
|
||||||
"[%(asctime)s.%(msecs)03d]: %(message)s", datefmt="%m/%d %H:%M:%S"
|
|
||||||
)
|
|
||||||
# stdout logging: master only
|
|
||||||
if distributed_rank == 0:
|
|
||||||
ch = logging.StreamHandler(stream=sys.stdout)
|
|
||||||
ch.setLevel(logging.DEBUG)
|
|
||||||
if color:
|
|
||||||
formatter = _ColorfulFormatter(
|
|
||||||
colored("[%(asctime)s.%(msecs)03d]: ", "green") + "%(message)s",
|
|
||||||
datefmt="%m/%d %H:%M:%S",
|
|
||||||
root_name=name,
|
|
||||||
abbrev_name=str(abbrev_name),
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
formatter = plain_formatter
|
|
||||||
ch.setFormatter(formatter)
|
|
||||||
logger.addHandler(ch)
|
|
||||||
|
|
||||||
# file logging: all workers
|
|
||||||
if output is not None:
|
|
||||||
if output.endswith(".txt") or output.endswith(".log"):
|
|
||||||
filename = output
|
|
||||||
else:
|
|
||||||
filename = os.path.join(output, "log.txt")
|
|
||||||
if distributed_rank > 0:
|
|
||||||
filename = filename + f".rank{distributed_rank}"
|
|
||||||
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
|
||||||
|
|
||||||
fh = logging.StreamHandler(_cached_log_stream(filename))
|
|
||||||
fh.setLevel(logging.DEBUG)
|
|
||||||
fh.setFormatter(plain_formatter)
|
|
||||||
logger.addHandler(fh)
|
|
||||||
|
|
||||||
return logger
|
|
||||||
|
|
||||||
|
|
||||||
# cache the opened file object, so that different calls to `setup_logger`
|
|
||||||
# with the same file name can safely write to the same file.
|
|
||||||
@functools.lru_cache(maxsize=None)
|
|
||||||
def _cached_log_stream(filename):
|
|
||||||
return open(filename, "a")
|
|
@ -1,750 +0,0 @@
|
|||||||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
||||||
"""
|
|
||||||
Misc functions, including distributed helpers.
|
|
||||||
|
|
||||||
Mostly copy-paste from torchvision references.
|
|
||||||
"""
|
|
||||||
import colorsys
|
|
||||||
import datetime
|
|
||||||
import functools
|
|
||||||
import io
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
import pickle
|
|
||||||
import subprocess
|
|
||||||
import time
|
|
||||||
from collections import OrderedDict, defaultdict, deque
|
|
||||||
from typing import List, Optional
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
import torch.distributed as dist
|
|
||||||
|
|
||||||
# needed due to empty tensor bug in pytorch and torchvision 0.5
|
|
||||||
import torchvision
|
|
||||||
from torch import Tensor
|
|
||||||
|
|
||||||
__torchvision_need_compat_flag = float(torchvision.__version__.split(".")[1]) < 7
|
|
||||||
if __torchvision_need_compat_flag:
|
|
||||||
from torchvision.ops import _new_empty_tensor
|
|
||||||
from torchvision.ops.misc import _output_size
|
|
||||||
|
|
||||||
|
|
||||||
class SmoothedValue(object):
|
|
||||||
"""Track a series of values and provide access to smoothed values over a
|
|
||||||
window or the global series average.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, window_size=20, fmt=None):
|
|
||||||
if fmt is None:
|
|
||||||
fmt = "{median:.4f} ({global_avg:.4f})"
|
|
||||||
self.deque = deque(maxlen=window_size)
|
|
||||||
self.total = 0.0
|
|
||||||
self.count = 0
|
|
||||||
self.fmt = fmt
|
|
||||||
|
|
||||||
def update(self, value, n=1):
|
|
||||||
self.deque.append(value)
|
|
||||||
self.count += n
|
|
||||||
self.total += value * n
|
|
||||||
|
|
||||||
def synchronize_between_processes(self):
|
|
||||||
"""
|
|
||||||
Warning: does not synchronize the deque!
|
|
||||||
"""
|
|
||||||
if not is_dist_avail_and_initialized():
|
|
||||||
return
|
|
||||||
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
|
|
||||||
dist.barrier()
|
|
||||||
dist.all_reduce(t)
|
|
||||||
t = t.tolist()
|
|
||||||
self.count = int(t[0])
|
|
||||||
self.total = t[1]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def median(self):
|
|
||||||
d = torch.tensor(list(self.deque))
|
|
||||||
if d.shape[0] == 0:
|
|
||||||
return 0
|
|
||||||
return d.median().item()
|
|
||||||
|
|
||||||
@property
|
|
||||||
def avg(self):
|
|
||||||
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
|
||||||
return d.mean().item()
|
|
||||||
|
|
||||||
@property
|
|
||||||
def global_avg(self):
|
|
||||||
if os.environ.get("SHILONG_AMP", None) == "1":
|
|
||||||
eps = 1e-4
|
|
||||||
else:
|
|
||||||
eps = 1e-6
|
|
||||||
return self.total / (self.count + eps)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def max(self):
|
|
||||||
return max(self.deque)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def value(self):
|
|
||||||
return self.deque[-1]
|
|
||||||
|
|
||||||
def __str__(self):
|
|
||||||
return self.fmt.format(
|
|
||||||
median=self.median,
|
|
||||||
avg=self.avg,
|
|
||||||
global_avg=self.global_avg,
|
|
||||||
max=self.max,
|
|
||||||
value=self.value,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@functools.lru_cache()
|
|
||||||
def _get_global_gloo_group():
|
|
||||||
"""
|
|
||||||
Return a process group based on gloo backend, containing all the ranks
|
|
||||||
The result is cached.
|
|
||||||
"""
|
|
||||||
|
|
||||||
if dist.get_backend() == "nccl":
|
|
||||||
return dist.new_group(backend="gloo")
|
|
||||||
|
|
||||||
return dist.group.WORLD
|
|
||||||
|
|
||||||
|
|
||||||
def all_gather_cpu(data):
|
|
||||||
"""
|
|
||||||
Run all_gather on arbitrary picklable data (not necessarily tensors)
|
|
||||||
Args:
|
|
||||||
data: any picklable object
|
|
||||||
Returns:
|
|
||||||
list[data]: list of data gathered from each rank
|
|
||||||
"""
|
|
||||||
|
|
||||||
world_size = get_world_size()
|
|
||||||
if world_size == 1:
|
|
||||||
return [data]
|
|
||||||
|
|
||||||
cpu_group = _get_global_gloo_group()
|
|
||||||
|
|
||||||
buffer = io.BytesIO()
|
|
||||||
torch.save(data, buffer)
|
|
||||||
data_view = buffer.getbuffer()
|
|
||||||
device = "cuda" if cpu_group is None else "cpu"
|
|
||||||
tensor = torch.ByteTensor(data_view).to(device)
|
|
||||||
|
|
||||||
# obtain Tensor size of each rank
|
|
||||||
local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long)
|
|
||||||
size_list = [
|
|
||||||
torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)
|
|
||||||
]
|
|
||||||
if cpu_group is None:
|
|
||||||
dist.all_gather(size_list, local_size)
|
|
||||||
else:
|
|
||||||
print("gathering on cpu")
|
|
||||||
dist.all_gather(size_list, local_size, group=cpu_group)
|
|
||||||
size_list = [int(size.item()) for size in size_list]
|
|
||||||
max_size = max(size_list)
|
|
||||||
assert isinstance(local_size.item(), int)
|
|
||||||
local_size = int(local_size.item())
|
|
||||||
|
|
||||||
# receiving Tensor from all ranks
|
|
||||||
# we pad the tensor because torch all_gather does not support
|
|
||||||
# gathering tensors of different shapes
|
|
||||||
tensor_list = []
|
|
||||||
for _ in size_list:
|
|
||||||
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device))
|
|
||||||
if local_size != max_size:
|
|
||||||
padding = torch.empty(
|
|
||||||
size=(max_size - local_size,), dtype=torch.uint8, device=device
|
|
||||||
)
|
|
||||||
tensor = torch.cat((tensor, padding), dim=0)
|
|
||||||
if cpu_group is None:
|
|
||||||
dist.all_gather(tensor_list, tensor)
|
|
||||||
else:
|
|
||||||
dist.all_gather(tensor_list, tensor, group=cpu_group)
|
|
||||||
|
|
||||||
data_list = []
|
|
||||||
for size, tensor in zip(size_list, tensor_list):
|
|
||||||
tensor = torch.split(tensor, [size, max_size - size], dim=0)[0]
|
|
||||||
buffer = io.BytesIO(tensor.cpu().numpy())
|
|
||||||
obj = torch.load(buffer)
|
|
||||||
data_list.append(obj)
|
|
||||||
|
|
||||||
return data_list
|
|
||||||
|
|
||||||
|
|
||||||
def all_gather(data):
|
|
||||||
"""
|
|
||||||
Run all_gather on arbitrary picklable data (not necessarily tensors)
|
|
||||||
Args:
|
|
||||||
data: any picklable object
|
|
||||||
Returns:
|
|
||||||
list[data]: list of data gathered from each rank
|
|
||||||
"""
|
|
||||||
|
|
||||||
if os.getenv("CPU_REDUCE") == "1":
|
|
||||||
return all_gather_cpu(data)
|
|
||||||
|
|
||||||
world_size = get_world_size()
|
|
||||||
if world_size == 1:
|
|
||||||
return [data]
|
|
||||||
|
|
||||||
# serialized to a Tensor
|
|
||||||
buffer = pickle.dumps(data)
|
|
||||||
storage = torch.ByteStorage.from_buffer(buffer)
|
|
||||||
tensor = torch.ByteTensor(storage).to("cuda")
|
|
||||||
|
|
||||||
# obtain Tensor size of each rank
|
|
||||||
local_size = torch.tensor([tensor.numel()], device="cuda")
|
|
||||||
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
|
|
||||||
dist.all_gather(size_list, local_size)
|
|
||||||
size_list = [int(size.item()) for size in size_list]
|
|
||||||
max_size = max(size_list)
|
|
||||||
|
|
||||||
# receiving Tensor from all ranks
|
|
||||||
# we pad the tensor because torch all_gather does not support
|
|
||||||
# gathering tensors of different shapes
|
|
||||||
tensor_list = []
|
|
||||||
for _ in size_list:
|
|
||||||
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
|
|
||||||
if local_size != max_size:
|
|
||||||
padding = torch.empty(
|
|
||||||
size=(max_size - local_size,), dtype=torch.uint8, device="cuda"
|
|
||||||
)
|
|
||||||
tensor = torch.cat((tensor, padding), dim=0)
|
|
||||||
dist.all_gather(tensor_list, tensor)
|
|
||||||
|
|
||||||
data_list = []
|
|
||||||
for size, tensor in zip(size_list, tensor_list):
|
|
||||||
buffer = tensor.cpu().numpy().tobytes()[:size]
|
|
||||||
data_list.append(pickle.loads(buffer))
|
|
||||||
|
|
||||||
return data_list
|
|
||||||
|
|
||||||
|
|
||||||
def reduce_dict(input_dict, average=True):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
input_dict (dict): all the values will be reduced
|
|
||||||
average (bool): whether to do average or sum
|
|
||||||
Reduce the values in the dictionary from all processes so that all processes
|
|
||||||
have the averaged results. Returns a dict with the same fields as
|
|
||||||
input_dict, after reduction.
|
|
||||||
"""
|
|
||||||
world_size = get_world_size()
|
|
||||||
if world_size < 2:
|
|
||||||
return input_dict
|
|
||||||
with torch.no_grad():
|
|
||||||
names = []
|
|
||||||
values = []
|
|
||||||
# sort the keys so that they are consistent across processes
|
|
||||||
for k in sorted(input_dict.keys()):
|
|
||||||
names.append(k)
|
|
||||||
values.append(input_dict[k])
|
|
||||||
values = torch.stack(values, dim=0)
|
|
||||||
dist.all_reduce(values)
|
|
||||||
if average:
|
|
||||||
values /= world_size
|
|
||||||
reduced_dict = {k: v for k, v in zip(names, values)}
|
|
||||||
return reduced_dict
|
|
||||||
|
|
||||||
|
|
||||||
class MetricLogger(object):
|
|
||||||
def __init__(self, delimiter="\t"):
|
|
||||||
self.meters = defaultdict(SmoothedValue)
|
|
||||||
self.delimiter = delimiter
|
|
||||||
|
|
||||||
def update(self, **kwargs):
|
|
||||||
for k, v in kwargs.items():
|
|
||||||
if isinstance(v, torch.Tensor):
|
|
||||||
v = v.item()
|
|
||||||
assert isinstance(v, (float, int))
|
|
||||||
self.meters[k].update(v)
|
|
||||||
|
|
||||||
def __getattr__(self, attr):
|
|
||||||
if attr in self.meters:
|
|
||||||
return self.meters[attr]
|
|
||||||
if attr in self.__dict__:
|
|
||||||
return self.__dict__[attr]
|
|
||||||
raise AttributeError(
|
|
||||||
"'{}' object has no attribute '{}'".format(type(self).__name__, attr)
|
|
||||||
)
|
|
||||||
|
|
||||||
def __str__(self):
|
|
||||||
loss_str = []
|
|
||||||
for name, meter in self.meters.items():
|
|
||||||
# print(name, str(meter))
|
|
||||||
# import ipdb;ipdb.set_trace()
|
|
||||||
if meter.count > 0:
|
|
||||||
loss_str.append("{}: {}".format(name, str(meter)))
|
|
||||||
return self.delimiter.join(loss_str)
|
|
||||||
|
|
||||||
def synchronize_between_processes(self):
|
|
||||||
for meter in self.meters.values():
|
|
||||||
meter.synchronize_between_processes()
|
|
||||||
|
|
||||||
def add_meter(self, name, meter):
|
|
||||||
self.meters[name] = meter
|
|
||||||
|
|
||||||
def log_every(self, iterable, print_freq, header=None, logger=None):
|
|
||||||
if logger is None:
|
|
||||||
print_func = print
|
|
||||||
else:
|
|
||||||
print_func = logger.info
|
|
||||||
|
|
||||||
i = 0
|
|
||||||
if not header:
|
|
||||||
header = ""
|
|
||||||
start_time = time.time()
|
|
||||||
end = time.time()
|
|
||||||
iter_time = SmoothedValue(fmt="{avg:.4f}")
|
|
||||||
data_time = SmoothedValue(fmt="{avg:.4f}")
|
|
||||||
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
log_msg = self.delimiter.join(
|
|
||||||
[
|
|
||||||
header,
|
|
||||||
"[{0" + space_fmt + "}/{1}]",
|
|
||||||
"eta: {eta}",
|
|
||||||
"{meters}",
|
|
||||||
"time: {time}",
|
|
||||||
"data: {data}",
|
|
||||||
"max mem: {memory:.0f}",
|
|
||||||
]
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
log_msg = self.delimiter.join(
|
|
||||||
[
|
|
||||||
header,
|
|
||||||
"[{0" + space_fmt + "}/{1}]",
|
|
||||||
"eta: {eta}",
|
|
||||||
"{meters}",
|
|
||||||
"time: {time}",
|
|
||||||
"data: {data}",
|
|
||||||
]
|
|
||||||
)
|
|
||||||
MB = 1024.0 * 1024.0
|
|
||||||
for obj in iterable:
|
|
||||||
data_time.update(time.time() - end)
|
|
||||||
yield obj
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
iter_time.update(time.time() - end)
|
|
||||||
if i % print_freq == 0 or i == len(iterable) - 1:
|
|
||||||
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
|
||||||
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
print_func(
|
|
||||||
log_msg.format(
|
|
||||||
i,
|
|
||||||
len(iterable),
|
|
||||||
eta=eta_string,
|
|
||||||
meters=str(self),
|
|
||||||
time=str(iter_time),
|
|
||||||
data=str(data_time),
|
|
||||||
memory=torch.cuda.max_memory_allocated() / MB,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
print_func(
|
|
||||||
log_msg.format(
|
|
||||||
i,
|
|
||||||
len(iterable),
|
|
||||||
eta=eta_string,
|
|
||||||
meters=str(self),
|
|
||||||
time=str(iter_time),
|
|
||||||
data=str(data_time),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
i += 1
|
|
||||||
end = time.time()
|
|
||||||
total_time = time.time() - start_time
|
|
||||||
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
|
||||||
print_func(
|
|
||||||
"{} Total time: {} ({:.4f} s / it)".format(
|
|
||||||
header, total_time_str, total_time / len(iterable)
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def get_sha():
|
|
||||||
cwd = os.path.dirname(os.path.abspath(__file__))
|
|
||||||
|
|
||||||
def _run(command):
|
|
||||||
return subprocess.check_output(command, cwd=cwd).decode("ascii").strip()
|
|
||||||
|
|
||||||
sha = "N/A"
|
|
||||||
diff = "clean"
|
|
||||||
branch = "N/A"
|
|
||||||
try:
|
|
||||||
sha = _run(["git", "rev-parse", "HEAD"])
|
|
||||||
subprocess.check_output(["git", "diff"], cwd=cwd)
|
|
||||||
diff = _run(["git", "diff-index", "HEAD"])
|
|
||||||
diff = "has uncommited changes" if diff else "clean"
|
|
||||||
branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"])
|
|
||||||
except Exception:
|
|
||||||
pass
|
|
||||||
message = f"sha: {sha}, status: {diff}, branch: {branch}"
|
|
||||||
return message
|
|
||||||
|
|
||||||
|
|
||||||
def collate_fn(batch):
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
batch = list(zip(*batch))
|
|
||||||
batch[0] = nested_tensor_from_tensor_list(batch[0])
|
|
||||||
return tuple(batch)
|
|
||||||
|
|
||||||
|
|
||||||
def _max_by_axis(the_list):
|
|
||||||
# type: (List[List[int]]) -> List[int]
|
|
||||||
maxes = the_list[0]
|
|
||||||
for sublist in the_list[1:]:
|
|
||||||
for index, item in enumerate(sublist):
|
|
||||||
maxes[index] = max(maxes[index], item)
|
|
||||||
return maxes
|
|
||||||
|
|
||||||
|
|
||||||
class NestedTensor(object):
|
|
||||||
def __init__(self, tensors, mask: Optional[Tensor]):
|
|
||||||
self.tensors = tensors
|
|
||||||
self.mask = mask
|
|
||||||
if mask == "auto":
|
|
||||||
self.mask = torch.zeros_like(tensors).to(tensors.device)
|
|
||||||
if self.mask.dim() == 3:
|
|
||||||
self.mask = self.mask.sum(0).to(bool)
|
|
||||||
elif self.mask.dim() == 4:
|
|
||||||
self.mask = self.mask.sum(1).to(bool)
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
"tensors dim must be 3 or 4 but {}({})".format(
|
|
||||||
self.tensors.dim(), self.tensors.shape
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
def imgsize(self):
|
|
||||||
res = []
|
|
||||||
for i in range(self.tensors.shape[0]):
|
|
||||||
mask = self.mask[i]
|
|
||||||
maxH = (~mask).sum(0).max()
|
|
||||||
maxW = (~mask).sum(1).max()
|
|
||||||
res.append(torch.Tensor([maxH, maxW]))
|
|
||||||
return res
|
|
||||||
|
|
||||||
def to(self, device):
|
|
||||||
# type: (Device) -> NestedTensor # noqa
|
|
||||||
cast_tensor = self.tensors.to(device)
|
|
||||||
mask = self.mask
|
|
||||||
if mask is not None:
|
|
||||||
assert mask is not None
|
|
||||||
cast_mask = mask.to(device)
|
|
||||||
else:
|
|
||||||
cast_mask = None
|
|
||||||
return NestedTensor(cast_tensor, cast_mask)
|
|
||||||
|
|
||||||
def to_img_list_single(self, tensor, mask):
|
|
||||||
assert tensor.dim() == 3, "dim of tensor should be 3 but {}".format(
|
|
||||||
tensor.dim()
|
|
||||||
)
|
|
||||||
maxH = (~mask).sum(0).max()
|
|
||||||
maxW = (~mask).sum(1).max()
|
|
||||||
img = tensor[:, :maxH, :maxW]
|
|
||||||
return img
|
|
||||||
|
|
||||||
def to_img_list(self):
|
|
||||||
"""remove the padding and convert to img list
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
[type]: [description]
|
|
||||||
"""
|
|
||||||
if self.tensors.dim() == 3:
|
|
||||||
return self.to_img_list_single(self.tensors, self.mask)
|
|
||||||
else:
|
|
||||||
res = []
|
|
||||||
for i in range(self.tensors.shape[0]):
|
|
||||||
tensor_i = self.tensors[i]
|
|
||||||
mask_i = self.mask[i]
|
|
||||||
res.append(self.to_img_list_single(tensor_i, mask_i))
|
|
||||||
return res
|
|
||||||
|
|
||||||
@property
|
|
||||||
def device(self):
|
|
||||||
return self.tensors.device
|
|
||||||
|
|
||||||
def decompose(self):
|
|
||||||
return self.tensors, self.mask
|
|
||||||
|
|
||||||
def __repr__(self):
|
|
||||||
return str(self.tensors)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def shape(self):
|
|
||||||
return {"tensors.shape": self.tensors.shape, "mask.shape": self.mask.shape}
|
|
||||||
|
|
||||||
|
|
||||||
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
|
|
||||||
# TODO make this more general
|
|
||||||
if tensor_list[0].ndim == 3:
|
|
||||||
if torchvision._is_tracing():
|
|
||||||
# nested_tensor_from_tensor_list() does not export well to ONNX
|
|
||||||
# call _onnx_nested_tensor_from_tensor_list() instead
|
|
||||||
return _onnx_nested_tensor_from_tensor_list(tensor_list)
|
|
||||||
|
|
||||||
# TODO make it support different-sized images
|
|
||||||
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
|
|
||||||
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
|
|
||||||
batch_shape = [len(tensor_list)] + max_size
|
|
||||||
b, c, h, w = batch_shape
|
|
||||||
dtype = tensor_list[0].dtype
|
|
||||||
device = tensor_list[0].device
|
|
||||||
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
|
|
||||||
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
|
|
||||||
for img, pad_img, m in zip(tensor_list, tensor, mask):
|
|
||||||
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
|
||||||
m[: img.shape[1], : img.shape[2]] = False
|
|
||||||
else:
|
|
||||||
raise ValueError("not supported")
|
|
||||||
return NestedTensor(tensor, mask)
|
|
||||||
|
|
||||||
|
|
||||||
# _onnx_nested_tensor_from_tensor_list() is an implementation of
|
|
||||||
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
|
|
||||||
@torch.jit.unused
|
|
||||||
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
|
|
||||||
max_size = []
|
|
||||||
for i in range(tensor_list[0].dim()):
|
|
||||||
max_size_i = torch.max(
|
|
||||||
torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)
|
|
||||||
).to(torch.int64)
|
|
||||||
max_size.append(max_size_i)
|
|
||||||
max_size = tuple(max_size)
|
|
||||||
|
|
||||||
# work around for
|
|
||||||
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
|
||||||
# m[: img.shape[1], :img.shape[2]] = False
|
|
||||||
# which is not yet supported in onnx
|
|
||||||
padded_imgs = []
|
|
||||||
padded_masks = []
|
|
||||||
for img in tensor_list:
|
|
||||||
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
|
|
||||||
padded_img = torch.nn.functional.pad(
|
|
||||||
img, (0, padding[2], 0, padding[1], 0, padding[0])
|
|
||||||
)
|
|
||||||
padded_imgs.append(padded_img)
|
|
||||||
|
|
||||||
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
|
|
||||||
padded_mask = torch.nn.functional.pad(
|
|
||||||
m, (0, padding[2], 0, padding[1]), "constant", 1
|
|
||||||
)
|
|
||||||
padded_masks.append(padded_mask.to(torch.bool))
|
|
||||||
|
|
||||||
tensor = torch.stack(padded_imgs)
|
|
||||||
mask = torch.stack(padded_masks)
|
|
||||||
|
|
||||||
return NestedTensor(tensor, mask=mask)
|
|
||||||
|
|
||||||
|
|
||||||
def setup_for_distributed(is_master):
|
|
||||||
"""
|
|
||||||
This function disables printing when not in master process
|
|
||||||
"""
|
|
||||||
import builtins as __builtin__
|
|
||||||
|
|
||||||
builtin_print = __builtin__.print
|
|
||||||
|
|
||||||
def print(*args, **kwargs):
|
|
||||||
force = kwargs.pop("force", False)
|
|
||||||
if is_master or force:
|
|
||||||
builtin_print(*args, **kwargs)
|
|
||||||
|
|
||||||
__builtin__.print = print
|
|
||||||
|
|
||||||
|
|
||||||
def is_dist_avail_and_initialized():
|
|
||||||
if not dist.is_available():
|
|
||||||
return False
|
|
||||||
if not dist.is_initialized():
|
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
|
||||||
def get_world_size():
|
|
||||||
if not is_dist_avail_and_initialized():
|
|
||||||
return 1
|
|
||||||
return dist.get_world_size()
|
|
||||||
|
|
||||||
|
|
||||||
def get_rank():
|
|
||||||
if not is_dist_avail_and_initialized():
|
|
||||||
return 0
|
|
||||||
return dist.get_rank()
|
|
||||||
|
|
||||||
|
|
||||||
def is_main_process():
|
|
||||||
return get_rank() == 0
|
|
||||||
|
|
||||||
|
|
||||||
def save_on_master(*args, **kwargs):
|
|
||||||
if is_main_process():
|
|
||||||
torch.save(*args, **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
def init_distributed_mode(args):
|
|
||||||
if (
|
|
||||||
"WORLD_SIZE" in os.environ and os.environ["WORLD_SIZE"] != ""
|
|
||||||
): # 'RANK' in os.environ and
|
|
||||||
args.rank = int(os.environ["RANK"])
|
|
||||||
args.world_size = int(os.environ["WORLD_SIZE"])
|
|
||||||
args.gpu = args.local_rank = int(os.environ["LOCAL_RANK"])
|
|
||||||
|
|
||||||
# launch by torch.distributed.launch
|
|
||||||
# Single node
|
|
||||||
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ...
|
|
||||||
# Multi nodes
|
|
||||||
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 0 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
|
|
||||||
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 1 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
|
|
||||||
# args.rank = int(os.environ.get('OMPI_COMM_WORLD_RANK'))
|
|
||||||
# local_world_size = int(os.environ['GPU_PER_NODE_COUNT'])
|
|
||||||
# args.world_size = args.world_size * local_world_size
|
|
||||||
# args.gpu = args.local_rank = int(os.environ['LOCAL_RANK'])
|
|
||||||
# args.rank = args.rank * local_world_size + args.local_rank
|
|
||||||
print(
|
|
||||||
"world size: {}, rank: {}, local rank: {}".format(
|
|
||||||
args.world_size, args.rank, args.local_rank
|
|
||||||
)
|
|
||||||
)
|
|
||||||
print(json.dumps(dict(os.environ), indent=2))
|
|
||||||
elif "SLURM_PROCID" in os.environ:
|
|
||||||
args.rank = int(os.environ["SLURM_PROCID"])
|
|
||||||
args.gpu = args.local_rank = int(os.environ["SLURM_LOCALID"])
|
|
||||||
args.world_size = int(os.environ["SLURM_NPROCS"])
|
|
||||||
|
|
||||||
print(
|
|
||||||
"world size: {}, world rank: {}, local rank: {}, device_count: {}".format(
|
|
||||||
args.world_size, args.rank, args.local_rank, torch.cuda.device_count()
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
print("Not using distributed mode")
|
|
||||||
args.distributed = False
|
|
||||||
args.world_size = 1
|
|
||||||
args.rank = 0
|
|
||||||
args.local_rank = 0
|
|
||||||
return
|
|
||||||
|
|
||||||
print(
|
|
||||||
"world_size:{} rank:{} local_rank:{}".format(
|
|
||||||
args.world_size, args.rank, args.local_rank
|
|
||||||
)
|
|
||||||
)
|
|
||||||
args.distributed = True
|
|
||||||
torch.cuda.set_device(args.local_rank)
|
|
||||||
args.dist_backend = "nccl"
|
|
||||||
print(
|
|
||||||
"| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True
|
|
||||||
)
|
|
||||||
|
|
||||||
torch.distributed.init_process_group(
|
|
||||||
backend=args.dist_backend,
|
|
||||||
world_size=args.world_size,
|
|
||||||
rank=args.rank,
|
|
||||||
init_method=args.dist_url,
|
|
||||||
)
|
|
||||||
|
|
||||||
print("Before torch.distributed.barrier()")
|
|
||||||
torch.distributed.barrier()
|
|
||||||
print("End torch.distributed.barrier()")
|
|
||||||
setup_for_distributed(args.rank == 0)
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def accuracy(output, target, topk=(1,)):
|
|
||||||
"""Computes the precision@k for the specified values of k"""
|
|
||||||
if target.numel() == 0:
|
|
||||||
return [torch.zeros([], device=output.device)]
|
|
||||||
maxk = max(topk)
|
|
||||||
batch_size = target.size(0)
|
|
||||||
|
|
||||||
_, pred = output.topk(maxk, 1, True, True)
|
|
||||||
pred = pred.t()
|
|
||||||
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
|
||||||
|
|
||||||
res = []
|
|
||||||
for k in topk:
|
|
||||||
correct_k = correct[:k].view(-1).float().sum(0)
|
|
||||||
res.append(correct_k.mul_(100.0 / batch_size))
|
|
||||||
return res
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def accuracy_onehot(pred, gt):
|
|
||||||
"""_summary_
|
|
||||||
|
|
||||||
Args:
|
|
||||||
pred (_type_): n, c
|
|
||||||
gt (_type_): n, c
|
|
||||||
"""
|
|
||||||
tp = ((pred - gt).abs().sum(-1) < 1e-4).float().sum()
|
|
||||||
acc = tp / gt.shape[0] * 100
|
|
||||||
return acc
|
|
||||||
|
|
||||||
|
|
||||||
def interpolate(
|
|
||||||
input, size=None, scale_factor=None, mode="nearest", align_corners=None
|
|
||||||
):
|
|
||||||
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
|
|
||||||
"""
|
|
||||||
Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
|
|
||||||
This will eventually be supported natively by PyTorch, and this
|
|
||||||
class can go away.
|
|
||||||
"""
|
|
||||||
if __torchvision_need_compat_flag < 0.7:
|
|
||||||
if input.numel() > 0:
|
|
||||||
return torch.nn.functional.interpolate(
|
|
||||||
input, size, scale_factor, mode, align_corners
|
|
||||||
)
|
|
||||||
|
|
||||||
output_shape = _output_size(2, input, size, scale_factor)
|
|
||||||
output_shape = list(input.shape[:-2]) + list(output_shape)
|
|
||||||
return _new_empty_tensor(input, output_shape)
|
|
||||||
else:
|
|
||||||
return torchvision.ops.misc.interpolate(
|
|
||||||
input, size, scale_factor, mode, align_corners
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class color_sys:
|
|
||||||
def __init__(self, num_colors) -> None:
|
|
||||||
self.num_colors = num_colors
|
|
||||||
colors = []
|
|
||||||
for i in np.arange(0.0, 360.0, 360.0 / num_colors):
|
|
||||||
hue = i / 360.0
|
|
||||||
lightness = (50 + np.random.rand() * 10) / 100.0
|
|
||||||
saturation = (90 + np.random.rand() * 10) / 100.0
|
|
||||||
colors.append(
|
|
||||||
tuple(
|
|
||||||
[
|
|
||||||
int(j * 255)
|
|
||||||
for j in colorsys.hls_to_rgb(hue, lightness, saturation)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
)
|
|
||||||
self.colors = colors
|
|
||||||
|
|
||||||
def __call__(self, idx):
|
|
||||||
return self.colors[idx]
|
|
||||||
|
|
||||||
|
|
||||||
def inverse_sigmoid(x, eps=1e-3):
|
|
||||||
x = x.clamp(min=0, max=1)
|
|
||||||
x1 = x.clamp(min=eps)
|
|
||||||
x2 = (1 - x).clamp(min=eps)
|
|
||||||
return torch.log(x1 / x2)
|
|
||||||
|
|
||||||
|
|
||||||
def clean_state_dict(state_dict):
|
|
||||||
new_state_dict = OrderedDict()
|
|
||||||
for k, v in state_dict.items():
|
|
||||||
if k[:7] == "module.":
|
|
||||||
k = k[7:] # remove `module.`
|
|
||||||
new_state_dict[k] = v
|
|
||||||
return new_state_dict
|
|
@ -1,434 +0,0 @@
|
|||||||
# ==========================================================
|
|
||||||
# Modified from mmcv
|
|
||||||
# ==========================================================
|
|
||||||
import ast
|
|
||||||
import os
|
|
||||||
import os.path as osp
|
|
||||||
import shutil
|
|
||||||
import sys
|
|
||||||
import tempfile
|
|
||||||
from argparse import Action
|
|
||||||
from importlib import import_module
|
|
||||||
|
|
||||||
from addict import Dict
|
|
||||||
from yapf.yapflib.yapf_api import FormatCode
|
|
||||||
|
|
||||||
BASE_KEY = "_base_"
|
|
||||||
DELETE_KEY = "_delete_"
|
|
||||||
RESERVED_KEYS = ["filename", "text", "pretty_text", "get", "dump", "merge_from_dict"]
|
|
||||||
|
|
||||||
|
|
||||||
def check_file_exist(filename, msg_tmpl='file "{}" does not exist'):
|
|
||||||
if not osp.isfile(filename):
|
|
||||||
raise FileNotFoundError(msg_tmpl.format(filename))
|
|
||||||
|
|
||||||
|
|
||||||
class ConfigDict(Dict):
|
|
||||||
def __missing__(self, name):
|
|
||||||
raise KeyError(name)
|
|
||||||
|
|
||||||
def __getattr__(self, name):
|
|
||||||
try:
|
|
||||||
value = super(ConfigDict, self).__getattr__(name)
|
|
||||||
except KeyError:
|
|
||||||
ex = AttributeError(
|
|
||||||
f"'{self.__class__.__name__}' object has no " f"attribute '{name}'"
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
ex = e
|
|
||||||
else:
|
|
||||||
return value
|
|
||||||
raise ex
|
|
||||||
|
|
||||||
|
|
||||||
class SLConfig(object):
|
|
||||||
"""
|
|
||||||
config files.
|
|
||||||
only support .py file as config now.
|
|
||||||
|
|
||||||
ref: mmcv.utils.config
|
|
||||||
|
|
||||||
Example:
|
|
||||||
>>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
|
|
||||||
>>> cfg.a
|
|
||||||
1
|
|
||||||
>>> cfg.b
|
|
||||||
{'b1': [0, 1]}
|
|
||||||
>>> cfg.b.b1
|
|
||||||
[0, 1]
|
|
||||||
>>> cfg = Config.fromfile('tests/data/config/a.py')
|
|
||||||
>>> cfg.filename
|
|
||||||
"/home/kchen/projects/mmcv/tests/data/config/a.py"
|
|
||||||
>>> cfg.item4
|
|
||||||
'test'
|
|
||||||
>>> cfg
|
|
||||||
"Config [path: /home/kchen/projects/mmcv/tests/data/config/a.py]: "
|
|
||||||
"{'item1': [1, 2], 'item2': {'a': 0}, 'item3': True, 'item4': 'test'}"
|
|
||||||
"""
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _validate_py_syntax(filename):
|
|
||||||
with open(filename) as f:
|
|
||||||
content = f.read()
|
|
||||||
try:
|
|
||||||
ast.parse(content)
|
|
||||||
except SyntaxError:
|
|
||||||
raise SyntaxError("There are syntax errors in config " f"file {filename}")
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _file2dict(filename):
|
|
||||||
filename = osp.abspath(osp.expanduser(filename))
|
|
||||||
check_file_exist(filename)
|
|
||||||
if filename.lower().endswith(".py"):
|
|
||||||
with tempfile.TemporaryDirectory() as temp_config_dir:
|
|
||||||
temp_config_file = tempfile.NamedTemporaryFile(
|
|
||||||
dir=temp_config_dir, suffix=".py"
|
|
||||||
)
|
|
||||||
temp_config_name = osp.basename(temp_config_file.name)
|
|
||||||
if os.name == "nt":
|
|
||||||
temp_config_file.close()
|
|
||||||
shutil.copyfile(filename, osp.join(temp_config_dir, temp_config_name))
|
|
||||||
temp_module_name = osp.splitext(temp_config_name)[0]
|
|
||||||
sys.path.insert(0, temp_config_dir)
|
|
||||||
SLConfig._validate_py_syntax(filename)
|
|
||||||
mod = import_module(temp_module_name)
|
|
||||||
sys.path.pop(0)
|
|
||||||
cfg_dict = {
|
|
||||||
name: value
|
|
||||||
for name, value in mod.__dict__.items()
|
|
||||||
if not name.startswith("__")
|
|
||||||
}
|
|
||||||
# delete imported module
|
|
||||||
del sys.modules[temp_module_name]
|
|
||||||
# close temp file
|
|
||||||
temp_config_file.close()
|
|
||||||
elif filename.lower().endswith((".yml", ".yaml", ".json")):
|
|
||||||
from .slio import slload
|
|
||||||
|
|
||||||
cfg_dict = slload(filename)
|
|
||||||
else:
|
|
||||||
raise IOError("Only py/yml/yaml/json type are supported now!")
|
|
||||||
|
|
||||||
cfg_text = filename + "\n"
|
|
||||||
with open(filename, "r") as f:
|
|
||||||
cfg_text += f.read()
|
|
||||||
|
|
||||||
# parse the base file
|
|
||||||
if BASE_KEY in cfg_dict:
|
|
||||||
cfg_dir = osp.dirname(filename)
|
|
||||||
base_filename = cfg_dict.pop(BASE_KEY)
|
|
||||||
base_filename = (
|
|
||||||
base_filename if isinstance(base_filename, list) else [base_filename]
|
|
||||||
)
|
|
||||||
|
|
||||||
cfg_dict_list = list()
|
|
||||||
cfg_text_list = list()
|
|
||||||
for f in base_filename:
|
|
||||||
_cfg_dict, _cfg_text = SLConfig._file2dict(osp.join(cfg_dir, f))
|
|
||||||
cfg_dict_list.append(_cfg_dict)
|
|
||||||
cfg_text_list.append(_cfg_text)
|
|
||||||
|
|
||||||
base_cfg_dict = dict()
|
|
||||||
for c in cfg_dict_list:
|
|
||||||
if len(base_cfg_dict.keys() & c.keys()) > 0:
|
|
||||||
raise KeyError("Duplicate key is not allowed among bases")
|
|
||||||
# TODO Allow the duplicate key while warnning user
|
|
||||||
base_cfg_dict.update(c)
|
|
||||||
|
|
||||||
base_cfg_dict = SLConfig._merge_a_into_b(cfg_dict, base_cfg_dict)
|
|
||||||
cfg_dict = base_cfg_dict
|
|
||||||
|
|
||||||
# merge cfg_text
|
|
||||||
cfg_text_list.append(cfg_text)
|
|
||||||
cfg_text = "\n".join(cfg_text_list)
|
|
||||||
|
|
||||||
return cfg_dict, cfg_text
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _merge_a_into_b(a, b):
|
|
||||||
"""merge dict `a` into dict `b` (non-inplace).
|
|
||||||
values in `a` will overwrite `b`.
|
|
||||||
copy first to avoid inplace modification
|
|
||||||
|
|
||||||
Args:
|
|
||||||
a ([type]): [description]
|
|
||||||
b ([type]): [description]
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
[dict]: [description]
|
|
||||||
"""
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
if not isinstance(a, dict):
|
|
||||||
return a
|
|
||||||
|
|
||||||
b = b.copy()
|
|
||||||
for k, v in a.items():
|
|
||||||
if isinstance(v, dict) and k in b and not v.pop(DELETE_KEY, False):
|
|
||||||
if not isinstance(b[k], dict) and not isinstance(b[k], list):
|
|
||||||
# if :
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
raise TypeError(
|
|
||||||
f"{k}={v} in child config cannot inherit from base "
|
|
||||||
f"because {k} is a dict in the child config but is of "
|
|
||||||
f"type {type(b[k])} in base config. You may set "
|
|
||||||
f"`{DELETE_KEY}=True` to ignore the base config"
|
|
||||||
)
|
|
||||||
b[k] = SLConfig._merge_a_into_b(v, b[k])
|
|
||||||
elif isinstance(b, list):
|
|
||||||
try:
|
|
||||||
_ = int(k)
|
|
||||||
except BaseException:
|
|
||||||
raise TypeError(
|
|
||||||
f"b is a list, "
|
|
||||||
f"index {k} should be an int when input but {type(k)}"
|
|
||||||
)
|
|
||||||
b[int(k)] = SLConfig._merge_a_into_b(v, b[int(k)])
|
|
||||||
else:
|
|
||||||
b[k] = v
|
|
||||||
|
|
||||||
return b
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def fromfile(filename):
|
|
||||||
cfg_dict, cfg_text = SLConfig._file2dict(filename)
|
|
||||||
return SLConfig(cfg_dict, cfg_text=cfg_text, filename=filename)
|
|
||||||
|
|
||||||
def __init__(self, cfg_dict=None, cfg_text=None, filename=None):
|
|
||||||
if cfg_dict is None:
|
|
||||||
cfg_dict = dict()
|
|
||||||
elif not isinstance(cfg_dict, dict):
|
|
||||||
raise TypeError("cfg_dict must be a dict, but " f"got {type(cfg_dict)}")
|
|
||||||
for key in cfg_dict:
|
|
||||||
if key in RESERVED_KEYS:
|
|
||||||
raise KeyError(f"{key} is reserved for config file")
|
|
||||||
|
|
||||||
super(SLConfig, self).__setattr__("_cfg_dict", ConfigDict(cfg_dict))
|
|
||||||
super(SLConfig, self).__setattr__("_filename", filename)
|
|
||||||
if cfg_text:
|
|
||||||
text = cfg_text
|
|
||||||
elif filename:
|
|
||||||
with open(filename, "r") as f:
|
|
||||||
text = f.read()
|
|
||||||
else:
|
|
||||||
text = ""
|
|
||||||
super(SLConfig, self).__setattr__("_text", text)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def filename(self):
|
|
||||||
return self._filename
|
|
||||||
|
|
||||||
@property
|
|
||||||
def text(self):
|
|
||||||
return self._text
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pretty_text(self):
|
|
||||||
indent = 4
|
|
||||||
|
|
||||||
def _indent(s_, num_spaces):
|
|
||||||
s = s_.split("\n")
|
|
||||||
if len(s) == 1:
|
|
||||||
return s_
|
|
||||||
first = s.pop(0)
|
|
||||||
s = [(num_spaces * " ") + line for line in s]
|
|
||||||
s = "\n".join(s)
|
|
||||||
s = first + "\n" + s
|
|
||||||
return s
|
|
||||||
|
|
||||||
def _format_basic_types(k, v, use_mapping=False):
|
|
||||||
if isinstance(v, str):
|
|
||||||
v_str = f"'{v}'"
|
|
||||||
else:
|
|
||||||
v_str = str(v)
|
|
||||||
|
|
||||||
if use_mapping:
|
|
||||||
k_str = f"'{k}'" if isinstance(k, str) else str(k)
|
|
||||||
attr_str = f"{k_str}: {v_str}"
|
|
||||||
else:
|
|
||||||
attr_str = f"{str(k)}={v_str}"
|
|
||||||
attr_str = _indent(attr_str, indent)
|
|
||||||
|
|
||||||
return attr_str
|
|
||||||
|
|
||||||
def _format_list(k, v, use_mapping=False):
|
|
||||||
# check if all items in the list are dict
|
|
||||||
if all(isinstance(_, dict) for _ in v):
|
|
||||||
v_str = "[\n"
|
|
||||||
v_str += "\n".join(
|
|
||||||
f"dict({_indent(_format_dict(v_), indent)})," for v_ in v
|
|
||||||
).rstrip(",")
|
|
||||||
if use_mapping:
|
|
||||||
k_str = f"'{k}'" if isinstance(k, str) else str(k)
|
|
||||||
attr_str = f"{k_str}: {v_str}"
|
|
||||||
else:
|
|
||||||
attr_str = f"{str(k)}={v_str}"
|
|
||||||
attr_str = _indent(attr_str, indent) + "]"
|
|
||||||
else:
|
|
||||||
attr_str = _format_basic_types(k, v, use_mapping)
|
|
||||||
return attr_str
|
|
||||||
|
|
||||||
def _contain_invalid_identifier(dict_str):
|
|
||||||
contain_invalid_identifier = False
|
|
||||||
for key_name in dict_str:
|
|
||||||
contain_invalid_identifier |= not str(key_name).isidentifier()
|
|
||||||
return contain_invalid_identifier
|
|
||||||
|
|
||||||
def _format_dict(input_dict, outest_level=False):
|
|
||||||
r = ""
|
|
||||||
s = []
|
|
||||||
|
|
||||||
use_mapping = _contain_invalid_identifier(input_dict)
|
|
||||||
if use_mapping:
|
|
||||||
r += "{"
|
|
||||||
for idx, (k, v) in enumerate(input_dict.items()):
|
|
||||||
is_last = idx >= len(input_dict) - 1
|
|
||||||
end = "" if outest_level or is_last else ","
|
|
||||||
if isinstance(v, dict):
|
|
||||||
v_str = "\n" + _format_dict(v)
|
|
||||||
if use_mapping:
|
|
||||||
k_str = f"'{k}'" if isinstance(k, str) else str(k)
|
|
||||||
attr_str = f"{k_str}: dict({v_str}"
|
|
||||||
else:
|
|
||||||
attr_str = f"{str(k)}=dict({v_str}"
|
|
||||||
attr_str = _indent(attr_str, indent) + ")" + end
|
|
||||||
elif isinstance(v, list):
|
|
||||||
attr_str = _format_list(k, v, use_mapping) + end
|
|
||||||
else:
|
|
||||||
attr_str = _format_basic_types(k, v, use_mapping) + end
|
|
||||||
|
|
||||||
s.append(attr_str)
|
|
||||||
r += "\n".join(s)
|
|
||||||
if use_mapping:
|
|
||||||
r += "}"
|
|
||||||
return r
|
|
||||||
|
|
||||||
cfg_dict = self._cfg_dict.to_dict()
|
|
||||||
text = _format_dict(cfg_dict, outest_level=True)
|
|
||||||
# copied from setup.cfg
|
|
||||||
yapf_style = dict(
|
|
||||||
based_on_style="pep8",
|
|
||||||
blank_line_before_nested_class_or_def=True,
|
|
||||||
split_before_expression_after_opening_paren=True,
|
|
||||||
)
|
|
||||||
text, _ = FormatCode(text, style_config=yapf_style, verify=True)
|
|
||||||
|
|
||||||
return text
|
|
||||||
|
|
||||||
def __repr__(self):
|
|
||||||
return f"Config (path: {self.filename}): {self._cfg_dict.__repr__()}"
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return len(self._cfg_dict)
|
|
||||||
|
|
||||||
def __getattr__(self, name):
|
|
||||||
# # debug
|
|
||||||
# print('+'*15)
|
|
||||||
# print('name=%s' % name)
|
|
||||||
# print("addr:", id(self))
|
|
||||||
# # print('type(self):', type(self))
|
|
||||||
# print(self.__dict__)
|
|
||||||
# print('+'*15)
|
|
||||||
# if self.__dict__ == {}:
|
|
||||||
# raise ValueError
|
|
||||||
|
|
||||||
return getattr(self._cfg_dict, name)
|
|
||||||
|
|
||||||
def __getitem__(self, name):
|
|
||||||
return self._cfg_dict.__getitem__(name)
|
|
||||||
|
|
||||||
def __setattr__(self, name, value):
|
|
||||||
if isinstance(value, dict):
|
|
||||||
value = ConfigDict(value)
|
|
||||||
self._cfg_dict.__setattr__(name, value)
|
|
||||||
|
|
||||||
def __setitem__(self, name, value):
|
|
||||||
if isinstance(value, dict):
|
|
||||||
value = ConfigDict(value)
|
|
||||||
self._cfg_dict.__setitem__(name, value)
|
|
||||||
|
|
||||||
def __iter__(self):
|
|
||||||
return iter(self._cfg_dict)
|
|
||||||
|
|
||||||
def dump(self, file=None):
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
if file is None:
|
|
||||||
return self.pretty_text
|
|
||||||
else:
|
|
||||||
with open(file, "w") as f:
|
|
||||||
f.write(self.pretty_text)
|
|
||||||
|
|
||||||
def merge_from_dict(self, options):
|
|
||||||
"""Merge list into cfg_dict
|
|
||||||
|
|
||||||
Merge the dict parsed by MultipleKVAction into this cfg.
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
>>> options = {'model.backbone.depth': 50,
|
|
||||||
... 'model.backbone.with_cp':True}
|
|
||||||
>>> cfg = Config(dict(model=dict(backbone=dict(type='ResNet'))))
|
|
||||||
>>> cfg.merge_from_dict(options)
|
|
||||||
>>> cfg_dict = super(Config, self).__getattribute__('_cfg_dict')
|
|
||||||
>>> assert cfg_dict == dict(
|
|
||||||
... model=dict(backbone=dict(depth=50, with_cp=True)))
|
|
||||||
|
|
||||||
Args:
|
|
||||||
options (dict): dict of configs to merge from.
|
|
||||||
"""
|
|
||||||
option_cfg_dict = {}
|
|
||||||
for full_key, v in options.items():
|
|
||||||
d = option_cfg_dict
|
|
||||||
key_list = full_key.split(".")
|
|
||||||
for subkey in key_list[:-1]:
|
|
||||||
d.setdefault(subkey, ConfigDict())
|
|
||||||
d = d[subkey]
|
|
||||||
subkey = key_list[-1]
|
|
||||||
d[subkey] = v
|
|
||||||
|
|
||||||
cfg_dict = super(SLConfig, self).__getattribute__("_cfg_dict")
|
|
||||||
super(SLConfig, self).__setattr__(
|
|
||||||
"_cfg_dict", SLConfig._merge_a_into_b(option_cfg_dict, cfg_dict)
|
|
||||||
)
|
|
||||||
|
|
||||||
# for multiprocess
|
|
||||||
def __setstate__(self, state):
|
|
||||||
self.__init__(state)
|
|
||||||
|
|
||||||
def copy(self):
|
|
||||||
return SLConfig(self._cfg_dict.copy())
|
|
||||||
|
|
||||||
def deepcopy(self):
|
|
||||||
return SLConfig(self._cfg_dict.deepcopy())
|
|
||||||
|
|
||||||
|
|
||||||
class DictAction(Action):
|
|
||||||
"""
|
|
||||||
argparse action to split an argument into KEY=VALUE form
|
|
||||||
on the first = and append to a dictionary. List options should
|
|
||||||
be passed as comma separated values, i.e KEY=V1,V2,V3
|
|
||||||
"""
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _parse_int_float_bool(val):
|
|
||||||
try:
|
|
||||||
return int(val)
|
|
||||||
except ValueError:
|
|
||||||
pass
|
|
||||||
try:
|
|
||||||
return float(val)
|
|
||||||
except ValueError:
|
|
||||||
pass
|
|
||||||
if val.lower() in ["true", "false"]:
|
|
||||||
return True if val.lower() == "true" else False
|
|
||||||
if val.lower() in ["none", "null"]:
|
|
||||||
return None
|
|
||||||
return val
|
|
||||||
|
|
||||||
def __call__(self, parser, namespace, values, option_string=None):
|
|
||||||
options = {}
|
|
||||||
for kv in values:
|
|
||||||
key, val = kv.split("=", maxsplit=1)
|
|
||||||
val = [self._parse_int_float_bool(v) for v in val.split(",")]
|
|
||||||
if len(val) == 1:
|
|
||||||
val = val[0]
|
|
||||||
options[key] = val
|
|
||||||
setattr(namespace, self.dest, options)
|
|
@ -1,177 +0,0 @@
|
|||||||
# ==========================================================
|
|
||||||
# Modified from mmcv
|
|
||||||
# ==========================================================
|
|
||||||
|
|
||||||
import json
|
|
||||||
import pickle
|
|
||||||
from abc import ABCMeta, abstractmethod
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import yaml
|
|
||||||
|
|
||||||
try:
|
|
||||||
from yaml import CLoader as Loader, CDumper as Dumper
|
|
||||||
except ImportError:
|
|
||||||
from yaml import Loader, Dumper
|
|
||||||
|
|
||||||
|
|
||||||
# ===========================
|
|
||||||
# Rigister handler
|
|
||||||
# ===========================
|
|
||||||
|
|
||||||
|
|
||||||
class BaseFileHandler(metaclass=ABCMeta):
|
|
||||||
@abstractmethod
|
|
||||||
def load_from_fileobj(self, file, **kwargs):
|
|
||||||
pass
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def dump_to_fileobj(self, obj, file, **kwargs):
|
|
||||||
pass
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def dump_to_str(self, obj, **kwargs):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def load_from_path(self, filepath, mode="r", **kwargs):
|
|
||||||
with open(filepath, mode) as f:
|
|
||||||
return self.load_from_fileobj(f, **kwargs)
|
|
||||||
|
|
||||||
def dump_to_path(self, obj, filepath, mode="w", **kwargs):
|
|
||||||
with open(filepath, mode) as f:
|
|
||||||
self.dump_to_fileobj(obj, f, **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
class JsonHandler(BaseFileHandler):
|
|
||||||
def load_from_fileobj(self, file):
|
|
||||||
return json.load(file)
|
|
||||||
|
|
||||||
def dump_to_fileobj(self, obj, file, **kwargs):
|
|
||||||
json.dump(obj, file, **kwargs)
|
|
||||||
|
|
||||||
def dump_to_str(self, obj, **kwargs):
|
|
||||||
return json.dumps(obj, **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
class PickleHandler(BaseFileHandler):
|
|
||||||
def load_from_fileobj(self, file, **kwargs):
|
|
||||||
return pickle.load(file, **kwargs)
|
|
||||||
|
|
||||||
def load_from_path(self, filepath, **kwargs):
|
|
||||||
return super(PickleHandler, self).load_from_path(filepath, mode="rb", **kwargs)
|
|
||||||
|
|
||||||
def dump_to_str(self, obj, **kwargs):
|
|
||||||
kwargs.setdefault("protocol", 2)
|
|
||||||
return pickle.dumps(obj, **kwargs)
|
|
||||||
|
|
||||||
def dump_to_fileobj(self, obj, file, **kwargs):
|
|
||||||
kwargs.setdefault("protocol", 2)
|
|
||||||
pickle.dump(obj, file, **kwargs)
|
|
||||||
|
|
||||||
def dump_to_path(self, obj, filepath, **kwargs):
|
|
||||||
super(PickleHandler, self).dump_to_path(obj, filepath, mode="wb", **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
class YamlHandler(BaseFileHandler):
|
|
||||||
def load_from_fileobj(self, file, **kwargs):
|
|
||||||
kwargs.setdefault("Loader", Loader)
|
|
||||||
return yaml.load(file, **kwargs)
|
|
||||||
|
|
||||||
def dump_to_fileobj(self, obj, file, **kwargs):
|
|
||||||
kwargs.setdefault("Dumper", Dumper)
|
|
||||||
yaml.dump(obj, file, **kwargs)
|
|
||||||
|
|
||||||
def dump_to_str(self, obj, **kwargs):
|
|
||||||
kwargs.setdefault("Dumper", Dumper)
|
|
||||||
return yaml.dump(obj, **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
file_handlers = {
|
|
||||||
"json": JsonHandler(),
|
|
||||||
"yaml": YamlHandler(),
|
|
||||||
"yml": YamlHandler(),
|
|
||||||
"pickle": PickleHandler(),
|
|
||||||
"pkl": PickleHandler(),
|
|
||||||
}
|
|
||||||
|
|
||||||
# ===========================
|
|
||||||
# load and dump
|
|
||||||
# ===========================
|
|
||||||
|
|
||||||
|
|
||||||
def is_str(x):
|
|
||||||
"""Whether the input is an string instance.
|
|
||||||
|
|
||||||
Note: This method is deprecated since python 2 is no longer supported.
|
|
||||||
"""
|
|
||||||
return isinstance(x, str)
|
|
||||||
|
|
||||||
|
|
||||||
def slload(file, file_format=None, **kwargs):
|
|
||||||
"""Load data from json/yaml/pickle files.
|
|
||||||
|
|
||||||
This method provides a unified api for loading data from serialized files.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
file (str or :obj:`Path` or file-like object): Filename or a file-like
|
|
||||||
object.
|
|
||||||
file_format (str, optional): If not specified, the file format will be
|
|
||||||
inferred from the file extension, otherwise use the specified one.
|
|
||||||
Currently supported formats include "json", "yaml/yml" and
|
|
||||||
"pickle/pkl".
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
The content from the file.
|
|
||||||
"""
|
|
||||||
if isinstance(file, Path):
|
|
||||||
file = str(file)
|
|
||||||
if file_format is None and is_str(file):
|
|
||||||
file_format = file.split(".")[-1]
|
|
||||||
if file_format not in file_handlers:
|
|
||||||
raise TypeError(f"Unsupported format: {file_format}")
|
|
||||||
|
|
||||||
handler = file_handlers[file_format]
|
|
||||||
if is_str(file):
|
|
||||||
obj = handler.load_from_path(file, **kwargs)
|
|
||||||
elif hasattr(file, "read"):
|
|
||||||
obj = handler.load_from_fileobj(file, **kwargs)
|
|
||||||
else:
|
|
||||||
raise TypeError('"file" must be a filepath str or a file-object')
|
|
||||||
return obj
|
|
||||||
|
|
||||||
|
|
||||||
def sldump(obj, file=None, file_format=None, **kwargs):
|
|
||||||
"""Dump data to json/yaml/pickle strings or files.
|
|
||||||
|
|
||||||
This method provides a unified api for dumping data as strings or to files,
|
|
||||||
and also supports custom arguments for each file format.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
obj (any): The python object to be dumped.
|
|
||||||
file (str or :obj:`Path` or file-like object, optional): If not
|
|
||||||
specified, then the object is dump to a str, otherwise to a file
|
|
||||||
specified by the filename or file-like object.
|
|
||||||
file_format (str, optional): Same as :func:`load`.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
bool: True for success, False otherwise.
|
|
||||||
"""
|
|
||||||
if isinstance(file, Path):
|
|
||||||
file = str(file)
|
|
||||||
if file_format is None:
|
|
||||||
if is_str(file):
|
|
||||||
file_format = file.split(".")[-1]
|
|
||||||
elif file is None:
|
|
||||||
raise ValueError("file_format must be specified since file is None")
|
|
||||||
if file_format not in file_handlers:
|
|
||||||
raise TypeError(f"Unsupported format: {file_format}")
|
|
||||||
|
|
||||||
handler = file_handlers[file_format]
|
|
||||||
if file is None:
|
|
||||||
return handler.dump_to_str(obj, **kwargs)
|
|
||||||
elif is_str(file):
|
|
||||||
handler.dump_to_path(obj, file, **kwargs)
|
|
||||||
elif hasattr(file, "write"):
|
|
||||||
handler.dump_to_fileobj(obj, file, **kwargs)
|
|
||||||
else:
|
|
||||||
raise TypeError('"file" must be a filename str or a file-object')
|
|
@ -1,62 +0,0 @@
|
|||||||
import json
|
|
||||||
import time
|
|
||||||
|
|
||||||
|
|
||||||
class TimeCounter:
|
|
||||||
def __init__(self) -> None:
|
|
||||||
pass
|
|
||||||
|
|
||||||
def clear(self):
|
|
||||||
self.timedict = {}
|
|
||||||
self.basetime = time.perf_counter()
|
|
||||||
|
|
||||||
def timeit(self, name):
|
|
||||||
nowtime = time.perf_counter() - self.basetime
|
|
||||||
self.timedict[name] = nowtime
|
|
||||||
self.basetime = time.perf_counter()
|
|
||||||
|
|
||||||
|
|
||||||
class TimeHolder:
|
|
||||||
def __init__(self) -> None:
|
|
||||||
self.timedict = {}
|
|
||||||
|
|
||||||
def update(self, _timedict: dict):
|
|
||||||
for k, v in _timedict.items():
|
|
||||||
if k not in self.timedict:
|
|
||||||
self.timedict[k] = AverageMeter(name=k, val_only=True)
|
|
||||||
self.timedict[k].update(val=v)
|
|
||||||
|
|
||||||
def final_res(self):
|
|
||||||
return {k: v.avg for k, v in self.timedict.items()}
|
|
||||||
|
|
||||||
def __str__(self):
|
|
||||||
return json.dumps(self.final_res(), indent=2)
|
|
||||||
|
|
||||||
|
|
||||||
class AverageMeter(object):
|
|
||||||
"""Computes and stores the average and current value"""
|
|
||||||
|
|
||||||
def __init__(self, name, fmt=":f", val_only=False):
|
|
||||||
self.name = name
|
|
||||||
self.fmt = fmt
|
|
||||||
self.val_only = val_only
|
|
||||||
self.reset()
|
|
||||||
|
|
||||||
def reset(self):
|
|
||||||
self.val = 0
|
|
||||||
self.avg = 0
|
|
||||||
self.sum = 0
|
|
||||||
self.count = 0
|
|
||||||
|
|
||||||
def update(self, val, n=1):
|
|
||||||
self.val = val
|
|
||||||
self.sum += val * n
|
|
||||||
self.count += n
|
|
||||||
self.avg = self.sum / self.count
|
|
||||||
|
|
||||||
def __str__(self):
|
|
||||||
if self.val_only:
|
|
||||||
fmtstr = "{name} {val" + self.fmt + "}"
|
|
||||||
else:
|
|
||||||
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
|
|
||||||
return fmtstr.format(**self.__dict__)
|
|
@ -1,628 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import json
|
|
||||||
import warnings
|
|
||||||
from collections import OrderedDict
|
|
||||||
from copy import deepcopy
|
|
||||||
from typing import Any, Dict, List
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from transformers import AutoTokenizer
|
|
||||||
|
|
||||||
from groundingdino.util.slconfig import SLConfig
|
|
||||||
|
|
||||||
|
|
||||||
def slprint(x, name="x"):
|
|
||||||
if isinstance(x, (torch.Tensor, np.ndarray)):
|
|
||||||
print(f"{name}.shape:", x.shape)
|
|
||||||
elif isinstance(x, (tuple, list)):
|
|
||||||
print("type x:", type(x))
|
|
||||||
for i in range(min(10, len(x))):
|
|
||||||
slprint(x[i], f"{name}[{i}]")
|
|
||||||
elif isinstance(x, dict):
|
|
||||||
for k, v in x.items():
|
|
||||||
slprint(v, f"{name}[{k}]")
|
|
||||||
else:
|
|
||||||
print(f"{name}.type:", type(x))
|
|
||||||
|
|
||||||
|
|
||||||
def clean_state_dict(state_dict):
|
|
||||||
new_state_dict = OrderedDict()
|
|
||||||
for k, v in state_dict.items():
|
|
||||||
if k[:7] == "module.":
|
|
||||||
k = k[7:] # remove `module.`
|
|
||||||
new_state_dict[k] = v
|
|
||||||
return new_state_dict
|
|
||||||
|
|
||||||
|
|
||||||
def renorm(
|
|
||||||
img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
|
||||||
) -> torch.FloatTensor:
|
|
||||||
# img: tensor(3,H,W) or tensor(B,3,H,W)
|
|
||||||
# return: same as img
|
|
||||||
assert img.dim() == 3 or img.dim() == 4, (
|
|
||||||
"img.dim() should be 3 or 4 but %d" % img.dim()
|
|
||||||
)
|
|
||||||
if img.dim() == 3:
|
|
||||||
assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
|
|
||||||
img.size(0),
|
|
||||||
str(img.size()),
|
|
||||||
)
|
|
||||||
img_perm = img.permute(1, 2, 0)
|
|
||||||
mean = torch.Tensor(mean)
|
|
||||||
std = torch.Tensor(std)
|
|
||||||
img_res = img_perm * std + mean
|
|
||||||
return img_res.permute(2, 0, 1)
|
|
||||||
else: # img.dim() == 4
|
|
||||||
assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
|
|
||||||
img.size(1),
|
|
||||||
str(img.size()),
|
|
||||||
)
|
|
||||||
img_perm = img.permute(0, 2, 3, 1)
|
|
||||||
mean = torch.Tensor(mean)
|
|
||||||
std = torch.Tensor(std)
|
|
||||||
img_res = img_perm * std + mean
|
|
||||||
return img_res.permute(0, 3, 1, 2)
|
|
||||||
|
|
||||||
|
|
||||||
class CocoClassMapper:
|
|
||||||
def __init__(self) -> None:
|
|
||||||
self.category_map_str = {
|
|
||||||
"1": 1,
|
|
||||||
"2": 2,
|
|
||||||
"3": 3,
|
|
||||||
"4": 4,
|
|
||||||
"5": 5,
|
|
||||||
"6": 6,
|
|
||||||
"7": 7,
|
|
||||||
"8": 8,
|
|
||||||
"9": 9,
|
|
||||||
"10": 10,
|
|
||||||
"11": 11,
|
|
||||||
"13": 12,
|
|
||||||
"14": 13,
|
|
||||||
"15": 14,
|
|
||||||
"16": 15,
|
|
||||||
"17": 16,
|
|
||||||
"18": 17,
|
|
||||||
"19": 18,
|
|
||||||
"20": 19,
|
|
||||||
"21": 20,
|
|
||||||
"22": 21,
|
|
||||||
"23": 22,
|
|
||||||
"24": 23,
|
|
||||||
"25": 24,
|
|
||||||
"27": 25,
|
|
||||||
"28": 26,
|
|
||||||
"31": 27,
|
|
||||||
"32": 28,
|
|
||||||
"33": 29,
|
|
||||||
"34": 30,
|
|
||||||
"35": 31,
|
|
||||||
"36": 32,
|
|
||||||
"37": 33,
|
|
||||||
"38": 34,
|
|
||||||
"39": 35,
|
|
||||||
"40": 36,
|
|
||||||
"41": 37,
|
|
||||||
"42": 38,
|
|
||||||
"43": 39,
|
|
||||||
"44": 40,
|
|
||||||
"46": 41,
|
|
||||||
"47": 42,
|
|
||||||
"48": 43,
|
|
||||||
"49": 44,
|
|
||||||
"50": 45,
|
|
||||||
"51": 46,
|
|
||||||
"52": 47,
|
|
||||||
"53": 48,
|
|
||||||
"54": 49,
|
|
||||||
"55": 50,
|
|
||||||
"56": 51,
|
|
||||||
"57": 52,
|
|
||||||
"58": 53,
|
|
||||||
"59": 54,
|
|
||||||
"60": 55,
|
|
||||||
"61": 56,
|
|
||||||
"62": 57,
|
|
||||||
"63": 58,
|
|
||||||
"64": 59,
|
|
||||||
"65": 60,
|
|
||||||
"67": 61,
|
|
||||||
"70": 62,
|
|
||||||
"72": 63,
|
|
||||||
"73": 64,
|
|
||||||
"74": 65,
|
|
||||||
"75": 66,
|
|
||||||
"76": 67,
|
|
||||||
"77": 68,
|
|
||||||
"78": 69,
|
|
||||||
"79": 70,
|
|
||||||
"80": 71,
|
|
||||||
"81": 72,
|
|
||||||
"82": 73,
|
|
||||||
"84": 74,
|
|
||||||
"85": 75,
|
|
||||||
"86": 76,
|
|
||||||
"87": 77,
|
|
||||||
"88": 78,
|
|
||||||
"89": 79,
|
|
||||||
"90": 80,
|
|
||||||
}
|
|
||||||
self.origin2compact_mapper = {
|
|
||||||
int(k): v - 1 for k, v in self.category_map_str.items()
|
|
||||||
}
|
|
||||||
self.compact2origin_mapper = {
|
|
||||||
int(v - 1): int(k) for k, v in self.category_map_str.items()
|
|
||||||
}
|
|
||||||
|
|
||||||
def origin2compact(self, idx):
|
|
||||||
return self.origin2compact_mapper[int(idx)]
|
|
||||||
|
|
||||||
def compact2origin(self, idx):
|
|
||||||
return self.compact2origin_mapper[int(idx)]
|
|
||||||
|
|
||||||
|
|
||||||
def to_device(item, device):
|
|
||||||
if isinstance(item, torch.Tensor):
|
|
||||||
return item.to(device)
|
|
||||||
elif isinstance(item, list):
|
|
||||||
return [to_device(i, device) for i in item]
|
|
||||||
elif isinstance(item, dict):
|
|
||||||
return {k: to_device(v, device) for k, v in item.items()}
|
|
||||||
else:
|
|
||||||
raise NotImplementedError(
|
|
||||||
"Call Shilong if you use other containers! type: {}".format(type(item))
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
#
|
|
||||||
def get_gaussian_mean(x, axis, other_axis, softmax=True):
|
|
||||||
"""
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x (float): Input images(BxCxHxW)
|
|
||||||
axis (int): The index for weighted mean
|
|
||||||
other_axis (int): The other index
|
|
||||||
|
|
||||||
Returns: weighted index for axis, BxC
|
|
||||||
|
|
||||||
"""
|
|
||||||
mat2line = torch.sum(x, axis=other_axis)
|
|
||||||
# mat2line = mat2line / mat2line.mean() * 10
|
|
||||||
if softmax:
|
|
||||||
u = torch.softmax(mat2line, axis=2)
|
|
||||||
else:
|
|
||||||
u = mat2line / (mat2line.sum(2, keepdim=True) + 1e-6)
|
|
||||||
size = x.shape[axis]
|
|
||||||
ind = torch.linspace(0, 1, size).to(x.device)
|
|
||||||
batch = x.shape[0]
|
|
||||||
channel = x.shape[1]
|
|
||||||
index = ind.repeat([batch, channel, 1])
|
|
||||||
mean_position = torch.sum(index * u, dim=2)
|
|
||||||
return mean_position
|
|
||||||
|
|
||||||
|
|
||||||
def get_expected_points_from_map(hm, softmax=True):
|
|
||||||
"""get_gaussian_map_from_points
|
|
||||||
B,C,H,W -> B,N,2 float(0, 1) float(0, 1)
|
|
||||||
softargmax function
|
|
||||||
|
|
||||||
Args:
|
|
||||||
hm (float): Input images(BxCxHxW)
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
weighted index for axis, BxCx2. float between 0 and 1.
|
|
||||||
|
|
||||||
"""
|
|
||||||
# hm = 10*hm
|
|
||||||
B, C, H, W = hm.shape
|
|
||||||
y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax) # B,C
|
|
||||||
x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax) # B,C
|
|
||||||
# return torch.cat((x_mean.unsqueeze(-1), y_mean.unsqueeze(-1)), 2)
|
|
||||||
return torch.stack([x_mean, y_mean], dim=2)
|
|
||||||
|
|
||||||
|
|
||||||
# Positional encoding (section 5.1)
|
|
||||||
# borrow from nerf
|
|
||||||
class Embedder:
|
|
||||||
def __init__(self, **kwargs):
|
|
||||||
self.kwargs = kwargs
|
|
||||||
self.create_embedding_fn()
|
|
||||||
|
|
||||||
def create_embedding_fn(self):
|
|
||||||
embed_fns = []
|
|
||||||
d = self.kwargs["input_dims"]
|
|
||||||
out_dim = 0
|
|
||||||
if self.kwargs["include_input"]:
|
|
||||||
embed_fns.append(lambda x: x)
|
|
||||||
out_dim += d
|
|
||||||
|
|
||||||
max_freq = self.kwargs["max_freq_log2"]
|
|
||||||
N_freqs = self.kwargs["num_freqs"]
|
|
||||||
|
|
||||||
if self.kwargs["log_sampling"]:
|
|
||||||
freq_bands = 2.0 ** torch.linspace(0.0, max_freq, steps=N_freqs)
|
|
||||||
else:
|
|
||||||
freq_bands = torch.linspace(2.0**0.0, 2.0**max_freq, steps=N_freqs)
|
|
||||||
|
|
||||||
for freq in freq_bands:
|
|
||||||
for p_fn in self.kwargs["periodic_fns"]:
|
|
||||||
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq))
|
|
||||||
out_dim += d
|
|
||||||
|
|
||||||
self.embed_fns = embed_fns
|
|
||||||
self.out_dim = out_dim
|
|
||||||
|
|
||||||
def embed(self, inputs):
|
|
||||||
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
|
|
||||||
|
|
||||||
|
|
||||||
def get_embedder(multires, i=0):
|
|
||||||
import torch.nn as nn
|
|
||||||
|
|
||||||
if i == -1:
|
|
||||||
return nn.Identity(), 3
|
|
||||||
|
|
||||||
embed_kwargs = {
|
|
||||||
"include_input": True,
|
|
||||||
"input_dims": 3,
|
|
||||||
"max_freq_log2": multires - 1,
|
|
||||||
"num_freqs": multires,
|
|
||||||
"log_sampling": True,
|
|
||||||
"periodic_fns": [torch.sin, torch.cos],
|
|
||||||
}
|
|
||||||
|
|
||||||
embedder_obj = Embedder(**embed_kwargs)
|
|
||||||
|
|
||||||
def embed(x, eo=embedder_obj):
|
|
||||||
return eo.embed(x)
|
|
||||||
|
|
||||||
return embed, embedder_obj.out_dim
|
|
||||||
|
|
||||||
|
|
||||||
class APOPMeter:
|
|
||||||
def __init__(self) -> None:
|
|
||||||
self.tp = 0
|
|
||||||
self.fp = 0
|
|
||||||
self.tn = 0
|
|
||||||
self.fn = 0
|
|
||||||
|
|
||||||
def update(self, pred, gt):
|
|
||||||
"""
|
|
||||||
Input:
|
|
||||||
pred, gt: Tensor()
|
|
||||||
"""
|
|
||||||
assert pred.shape == gt.shape
|
|
||||||
self.tp += torch.logical_and(pred == 1, gt == 1).sum().item()
|
|
||||||
self.fp += torch.logical_and(pred == 1, gt == 0).sum().item()
|
|
||||||
self.tn += torch.logical_and(pred == 0, gt == 0).sum().item()
|
|
||||||
self.tn += torch.logical_and(pred == 1, gt == 0).sum().item()
|
|
||||||
|
|
||||||
def update_cm(self, tp, fp, tn, fn):
|
|
||||||
self.tp += tp
|
|
||||||
self.fp += fp
|
|
||||||
self.tn += tn
|
|
||||||
self.tn += fn
|
|
||||||
|
|
||||||
|
|
||||||
def inverse_sigmoid(x, eps=1e-5):
|
|
||||||
x = x.clamp(min=0, max=1)
|
|
||||||
x1 = x.clamp(min=eps)
|
|
||||||
x2 = (1 - x).clamp(min=eps)
|
|
||||||
return torch.log(x1 / x2)
|
|
||||||
|
|
||||||
|
|
||||||
def get_raw_dict(args):
|
|
||||||
"""
|
|
||||||
return the dicf contained in args.
|
|
||||||
|
|
||||||
e.g:
|
|
||||||
>>> with open(path, 'w') as f:
|
|
||||||
json.dump(get_raw_dict(args), f, indent=2)
|
|
||||||
"""
|
|
||||||
if isinstance(args, argparse.Namespace):
|
|
||||||
return vars(args)
|
|
||||||
elif isinstance(args, dict):
|
|
||||||
return args
|
|
||||||
elif isinstance(args, SLConfig):
|
|
||||||
return args._cfg_dict
|
|
||||||
else:
|
|
||||||
raise NotImplementedError("Unknown type {}".format(type(args)))
|
|
||||||
|
|
||||||
|
|
||||||
def stat_tensors(tensor):
|
|
||||||
assert tensor.dim() == 1
|
|
||||||
tensor_sm = tensor.softmax(0)
|
|
||||||
entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum()
|
|
||||||
|
|
||||||
return {
|
|
||||||
"max": tensor.max(),
|
|
||||||
"min": tensor.min(),
|
|
||||||
"mean": tensor.mean(),
|
|
||||||
"var": tensor.var(),
|
|
||||||
"std": tensor.var() ** 0.5,
|
|
||||||
"entropy": entropy,
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
class NiceRepr:
|
|
||||||
"""Inherit from this class and define ``__nice__`` to "nicely" print your
|
|
||||||
objects.
|
|
||||||
|
|
||||||
Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function
|
|
||||||
Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``.
|
|
||||||
If the inheriting class has a ``__len__``, method then the default
|
|
||||||
``__nice__`` method will return its length.
|
|
||||||
|
|
||||||
Example:
|
|
||||||
>>> class Foo(NiceRepr):
|
|
||||||
... def __nice__(self):
|
|
||||||
... return 'info'
|
|
||||||
>>> foo = Foo()
|
|
||||||
>>> assert str(foo) == '<Foo(info)>'
|
|
||||||
>>> assert repr(foo).startswith('<Foo(info) at ')
|
|
||||||
|
|
||||||
Example:
|
|
||||||
>>> class Bar(NiceRepr):
|
|
||||||
... pass
|
|
||||||
>>> bar = Bar()
|
|
||||||
>>> import pytest
|
|
||||||
>>> with pytest.warns(None) as record:
|
|
||||||
>>> assert 'object at' in str(bar)
|
|
||||||
>>> assert 'object at' in repr(bar)
|
|
||||||
|
|
||||||
Example:
|
|
||||||
>>> class Baz(NiceRepr):
|
|
||||||
... def __len__(self):
|
|
||||||
... return 5
|
|
||||||
>>> baz = Baz()
|
|
||||||
>>> assert str(baz) == '<Baz(5)>'
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __nice__(self):
|
|
||||||
"""str: a "nice" summary string describing this module"""
|
|
||||||
if hasattr(self, "__len__"):
|
|
||||||
# It is a common pattern for objects to use __len__ in __nice__
|
|
||||||
# As a convenience we define a default __nice__ for these objects
|
|
||||||
return str(len(self))
|
|
||||||
else:
|
|
||||||
# In all other cases force the subclass to overload __nice__
|
|
||||||
raise NotImplementedError(
|
|
||||||
f"Define the __nice__ method for {self.__class__!r}"
|
|
||||||
)
|
|
||||||
|
|
||||||
def __repr__(self):
|
|
||||||
"""str: the string of the module"""
|
|
||||||
try:
|
|
||||||
nice = self.__nice__()
|
|
||||||
classname = self.__class__.__name__
|
|
||||||
return f"<{classname}({nice}) at {hex(id(self))}>"
|
|
||||||
except NotImplementedError as ex:
|
|
||||||
warnings.warn(str(ex), category=RuntimeWarning)
|
|
||||||
return object.__repr__(self)
|
|
||||||
|
|
||||||
def __str__(self):
|
|
||||||
"""str: the string of the module"""
|
|
||||||
try:
|
|
||||||
classname = self.__class__.__name__
|
|
||||||
nice = self.__nice__()
|
|
||||||
return f"<{classname}({nice})>"
|
|
||||||
except NotImplementedError as ex:
|
|
||||||
warnings.warn(str(ex), category=RuntimeWarning)
|
|
||||||
return object.__repr__(self)
|
|
||||||
|
|
||||||
|
|
||||||
def ensure_rng(rng=None):
|
|
||||||
"""Coerces input into a random number generator.
|
|
||||||
|
|
||||||
If the input is None, then a global random state is returned.
|
|
||||||
|
|
||||||
If the input is a numeric value, then that is used as a seed to construct a
|
|
||||||
random state. Otherwise the input is returned as-is.
|
|
||||||
|
|
||||||
Adapted from [1]_.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
rng (int | numpy.random.RandomState | None):
|
|
||||||
if None, then defaults to the global rng. Otherwise this can be an
|
|
||||||
integer or a RandomState class
|
|
||||||
Returns:
|
|
||||||
(numpy.random.RandomState) : rng -
|
|
||||||
a numpy random number generator
|
|
||||||
|
|
||||||
References:
|
|
||||||
.. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270 # noqa: E501
|
|
||||||
"""
|
|
||||||
|
|
||||||
if rng is None:
|
|
||||||
rng = np.random.mtrand._rand
|
|
||||||
elif isinstance(rng, int):
|
|
||||||
rng = np.random.RandomState(rng)
|
|
||||||
else:
|
|
||||||
rng = rng
|
|
||||||
return rng
|
|
||||||
|
|
||||||
|
|
||||||
def random_boxes(num=1, scale=1, rng=None):
|
|
||||||
"""Simple version of ``kwimage.Boxes.random``
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tensor: shape (n, 4) in x1, y1, x2, y2 format.
|
|
||||||
|
|
||||||
References:
|
|
||||||
https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390
|
|
||||||
|
|
||||||
Example:
|
|
||||||
>>> num = 3
|
|
||||||
>>> scale = 512
|
|
||||||
>>> rng = 0
|
|
||||||
>>> boxes = random_boxes(num, scale, rng)
|
|
||||||
>>> print(boxes)
|
|
||||||
tensor([[280.9925, 278.9802, 308.6148, 366.1769],
|
|
||||||
[216.9113, 330.6978, 224.0446, 456.5878],
|
|
||||||
[405.3632, 196.3221, 493.3953, 270.7942]])
|
|
||||||
"""
|
|
||||||
rng = ensure_rng(rng)
|
|
||||||
|
|
||||||
tlbr = rng.rand(num, 4).astype(np.float32)
|
|
||||||
|
|
||||||
tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2])
|
|
||||||
tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3])
|
|
||||||
br_x = np.maximum(tlbr[:, 0], tlbr[:, 2])
|
|
||||||
br_y = np.maximum(tlbr[:, 1], tlbr[:, 3])
|
|
||||||
|
|
||||||
tlbr[:, 0] = tl_x * scale
|
|
||||||
tlbr[:, 1] = tl_y * scale
|
|
||||||
tlbr[:, 2] = br_x * scale
|
|
||||||
tlbr[:, 3] = br_y * scale
|
|
||||||
|
|
||||||
boxes = torch.from_numpy(tlbr)
|
|
||||||
return boxes
|
|
||||||
|
|
||||||
|
|
||||||
class ModelEma(torch.nn.Module):
|
|
||||||
def __init__(self, model, decay=0.9997, device=None):
|
|
||||||
super(ModelEma, self).__init__()
|
|
||||||
# make a copy of the model for accumulating moving average of weights
|
|
||||||
self.module = deepcopy(model)
|
|
||||||
self.module.eval()
|
|
||||||
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
|
|
||||||
self.decay = decay
|
|
||||||
self.device = device # perform ema on different device from model if set
|
|
||||||
if self.device is not None:
|
|
||||||
self.module.to(device=device)
|
|
||||||
|
|
||||||
def _update(self, model, update_fn):
|
|
||||||
with torch.no_grad():
|
|
||||||
for ema_v, model_v in zip(
|
|
||||||
self.module.state_dict().values(), model.state_dict().values()
|
|
||||||
):
|
|
||||||
if self.device is not None:
|
|
||||||
model_v = model_v.to(device=self.device)
|
|
||||||
ema_v.copy_(update_fn(ema_v, model_v))
|
|
||||||
|
|
||||||
def update(self, model):
|
|
||||||
self._update(
|
|
||||||
model, update_fn=lambda e, m: self.decay * e + (1.0 - self.decay) * m
|
|
||||||
)
|
|
||||||
|
|
||||||
def set(self, model):
|
|
||||||
self._update(model, update_fn=lambda e, m: m)
|
|
||||||
|
|
||||||
|
|
||||||
class BestMetricSingle:
|
|
||||||
def __init__(self, init_res=0.0, better="large") -> None:
|
|
||||||
self.init_res = init_res
|
|
||||||
self.best_res = init_res
|
|
||||||
self.best_ep = -1
|
|
||||||
|
|
||||||
self.better = better
|
|
||||||
assert better in ["large", "small"]
|
|
||||||
|
|
||||||
def isbetter(self, new_res, old_res):
|
|
||||||
if self.better == "large":
|
|
||||||
return new_res > old_res
|
|
||||||
if self.better == "small":
|
|
||||||
return new_res < old_res
|
|
||||||
|
|
||||||
def update(self, new_res, ep):
|
|
||||||
if self.isbetter(new_res, self.best_res):
|
|
||||||
self.best_res = new_res
|
|
||||||
self.best_ep = ep
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
return "best_res: {}\t best_ep: {}".format(self.best_res, self.best_ep)
|
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
|
||||||
return self.__str__()
|
|
||||||
|
|
||||||
def summary(self) -> dict:
|
|
||||||
return {
|
|
||||||
"best_res": self.best_res,
|
|
||||||
"best_ep": self.best_ep,
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
class BestMetricHolder:
|
|
||||||
def __init__(self, init_res=0.0, better="large", use_ema=False) -> None:
|
|
||||||
self.best_all = BestMetricSingle(init_res, better)
|
|
||||||
self.use_ema = use_ema
|
|
||||||
if use_ema:
|
|
||||||
self.best_ema = BestMetricSingle(init_res, better)
|
|
||||||
self.best_regular = BestMetricSingle(init_res, better)
|
|
||||||
|
|
||||||
def update(self, new_res, epoch, is_ema=False):
|
|
||||||
"""
|
|
||||||
return if the results is the best.
|
|
||||||
"""
|
|
||||||
if not self.use_ema:
|
|
||||||
return self.best_all.update(new_res, epoch)
|
|
||||||
else:
|
|
||||||
if is_ema:
|
|
||||||
self.best_ema.update(new_res, epoch)
|
|
||||||
return self.best_all.update(new_res, epoch)
|
|
||||||
else:
|
|
||||||
self.best_regular.update(new_res, epoch)
|
|
||||||
return self.best_all.update(new_res, epoch)
|
|
||||||
|
|
||||||
def summary(self):
|
|
||||||
if not self.use_ema:
|
|
||||||
return self.best_all.summary()
|
|
||||||
|
|
||||||
res = {}
|
|
||||||
res.update({f"all_{k}": v for k, v in self.best_all.summary().items()})
|
|
||||||
res.update({f"regular_{k}": v for k, v in self.best_regular.summary().items()})
|
|
||||||
res.update({f"ema_{k}": v for k, v in self.best_ema.summary().items()})
|
|
||||||
return res
|
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
|
||||||
return json.dumps(self.summary(), indent=2)
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
return self.__repr__()
|
|
||||||
|
|
||||||
|
|
||||||
def targets_to(targets: List[Dict[str, Any]], device):
|
|
||||||
"""Moves the target dicts to the given device."""
|
|
||||||
excluded_keys = [
|
|
||||||
"questionId",
|
|
||||||
"tokens_positive",
|
|
||||||
"strings_positive",
|
|
||||||
"tokens",
|
|
||||||
"dataset_name",
|
|
||||||
"sentence_id",
|
|
||||||
"original_img_id",
|
|
||||||
"nb_eval",
|
|
||||||
"task_id",
|
|
||||||
"original_id",
|
|
||||||
"token_span",
|
|
||||||
"caption",
|
|
||||||
"dataset_type",
|
|
||||||
]
|
|
||||||
return [
|
|
||||||
{k: v.to(device) if k not in excluded_keys else v for k, v in t.items()}
|
|
||||||
for t in targets
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
def get_phrases_from_posmap(
|
|
||||||
posmap: torch.BoolTensor,
|
|
||||||
tokenized: Dict,
|
|
||||||
tokenizer: AutoTokenizer,
|
|
||||||
left_idx: int = 0,
|
|
||||||
right_idx: int = 255,
|
|
||||||
):
|
|
||||||
assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor"
|
|
||||||
if posmap.dim() == 1:
|
|
||||||
posmap[0 : left_idx + 1] = False
|
|
||||||
posmap[right_idx:] = False
|
|
||||||
non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist()
|
|
||||||
token_ids = [tokenized["input_ids"][i] for i in non_zero_idx]
|
|
||||||
return tokenizer.decode(token_ids)
|
|
||||||
else:
|
|
||||||
raise NotImplementedError("posmap must be 1-dim")
|
|
@ -1,328 +0,0 @@
|
|||||||
# -*- coding: utf-8 -*-
|
|
||||||
"""
|
|
||||||
@File : visualizer.py
|
|
||||||
@Time : 2022/04/05 11:39:33
|
|
||||||
@Author : Shilong Liu
|
|
||||||
@Contact : slongliu86@gmail.com
|
|
||||||
"""
|
|
||||||
|
|
||||||
import datetime
|
|
||||||
import os
|
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from matplotlib import transforms
|
|
||||||
from matplotlib.collections import PatchCollection
|
|
||||||
from matplotlib.patches import Polygon
|
|
||||||
from pycocotools import mask as maskUtils
|
|
||||||
|
|
||||||
|
|
||||||
def renorm(
|
|
||||||
img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
|
||||||
) -> torch.FloatTensor:
|
|
||||||
# img: tensor(3,H,W) or tensor(B,3,H,W)
|
|
||||||
# return: same as img
|
|
||||||
assert img.dim() == 3 or img.dim() == 4, (
|
|
||||||
"img.dim() should be 3 or 4 but %d" % img.dim()
|
|
||||||
)
|
|
||||||
if img.dim() == 3:
|
|
||||||
assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
|
|
||||||
img.size(0),
|
|
||||||
str(img.size()),
|
|
||||||
)
|
|
||||||
img_perm = img.permute(1, 2, 0)
|
|
||||||
mean = torch.Tensor(mean)
|
|
||||||
std = torch.Tensor(std)
|
|
||||||
img_res = img_perm * std + mean
|
|
||||||
return img_res.permute(2, 0, 1)
|
|
||||||
else: # img.dim() == 4
|
|
||||||
assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
|
|
||||||
img.size(1),
|
|
||||||
str(img.size()),
|
|
||||||
)
|
|
||||||
img_perm = img.permute(0, 2, 3, 1)
|
|
||||||
mean = torch.Tensor(mean)
|
|
||||||
std = torch.Tensor(std)
|
|
||||||
img_res = img_perm * std + mean
|
|
||||||
return img_res.permute(0, 3, 1, 2)
|
|
||||||
|
|
||||||
|
|
||||||
class ColorMap:
|
|
||||||
def __init__(self, basergb=[255, 255, 0]):
|
|
||||||
self.basergb = np.array(basergb)
|
|
||||||
|
|
||||||
def __call__(self, attnmap):
|
|
||||||
# attnmap: h, w. np.uint8.
|
|
||||||
# return: h, w, 4. np.uint8.
|
|
||||||
assert attnmap.dtype == np.uint8
|
|
||||||
h, w = attnmap.shape
|
|
||||||
res = self.basergb.copy()
|
|
||||||
res = res[None][None].repeat(h, 0).repeat(w, 1) # h, w, 3
|
|
||||||
attn1 = attnmap.copy()[..., None] # h, w, 1
|
|
||||||
res = np.concatenate((res, attn1), axis=-1).astype(np.uint8)
|
|
||||||
return res
|
|
||||||
|
|
||||||
|
|
||||||
def rainbow_text(x, y, ls, lc, **kw):
|
|
||||||
"""
|
|
||||||
Take a list of strings ``ls`` and colors ``lc`` and place them next to each
|
|
||||||
other, with text ls[i] being shown in color lc[i].
|
|
||||||
|
|
||||||
This example shows how to do both vertical and horizontal text, and will
|
|
||||||
pass all keyword arguments to plt.text, so you can set the font size,
|
|
||||||
family, etc.
|
|
||||||
"""
|
|
||||||
t = plt.gca().transData
|
|
||||||
fig = plt.gcf()
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
# horizontal version
|
|
||||||
for s, c in zip(ls, lc):
|
|
||||||
text = plt.text(x, y, " " + s + " ", color=c, transform=t, **kw)
|
|
||||||
text.draw(fig.canvas.get_renderer())
|
|
||||||
ex = text.get_window_extent()
|
|
||||||
t = transforms.offset_copy(text._transform, x=ex.width, units="dots")
|
|
||||||
|
|
||||||
# #vertical version
|
|
||||||
# for s,c in zip(ls,lc):
|
|
||||||
# text = plt.text(x,y," "+s+" ",color=c, transform=t,
|
|
||||||
# rotation=90,va='bottom',ha='center',**kw)
|
|
||||||
# text.draw(fig.canvas.get_renderer())
|
|
||||||
# ex = text.get_window_extent()
|
|
||||||
# t = transforms.offset_copy(text._transform, y=ex.height, units='dots')
|
|
||||||
|
|
||||||
|
|
||||||
class COCOVisualizer:
|
|
||||||
def __init__(self, coco=None, tokenlizer=None) -> None:
|
|
||||||
self.coco = coco
|
|
||||||
|
|
||||||
def visualize(self, img, tgt, caption=None, dpi=180, savedir="vis"):
|
|
||||||
"""
|
|
||||||
img: tensor(3, H, W)
|
|
||||||
tgt: make sure they are all on cpu.
|
|
||||||
must have items: 'image_id', 'boxes', 'size'
|
|
||||||
"""
|
|
||||||
plt.figure(dpi=dpi)
|
|
||||||
plt.rcParams["font.size"] = "5"
|
|
||||||
ax = plt.gca()
|
|
||||||
img = renorm(img).permute(1, 2, 0)
|
|
||||||
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
ax.imshow(img)
|
|
||||||
|
|
||||||
self.addtgt(tgt)
|
|
||||||
|
|
||||||
if tgt is None:
|
|
||||||
image_id = 0
|
|
||||||
elif "image_id" not in tgt:
|
|
||||||
image_id = 0
|
|
||||||
else:
|
|
||||||
image_id = tgt["image_id"]
|
|
||||||
|
|
||||||
if caption is None:
|
|
||||||
savename = "{}/{}-{}.png".format(
|
|
||||||
savedir, int(image_id), str(datetime.datetime.now()).replace(" ", "-")
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
savename = "{}/{}-{}-{}.png".format(
|
|
||||||
savedir,
|
|
||||||
caption,
|
|
||||||
int(image_id),
|
|
||||||
str(datetime.datetime.now()).replace(" ", "-"),
|
|
||||||
)
|
|
||||||
print("savename: {}".format(savename))
|
|
||||||
os.makedirs(os.path.dirname(savename), exist_ok=True)
|
|
||||||
plt.savefig(savename)
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
def addtgt(self, tgt):
|
|
||||||
""" """
|
|
||||||
if tgt is None or "boxes" not in tgt:
|
|
||||||
ax = plt.gca()
|
|
||||||
|
|
||||||
if "caption" in tgt:
|
|
||||||
ax.set_title(tgt["caption"], wrap=True)
|
|
||||||
|
|
||||||
ax.set_axis_off()
|
|
||||||
return
|
|
||||||
|
|
||||||
ax = plt.gca()
|
|
||||||
H, W = tgt["size"]
|
|
||||||
numbox = tgt["boxes"].shape[0]
|
|
||||||
|
|
||||||
color = []
|
|
||||||
polygons = []
|
|
||||||
boxes = []
|
|
||||||
for box in tgt["boxes"].cpu():
|
|
||||||
unnormbbox = box * torch.Tensor([W, H, W, H])
|
|
||||||
unnormbbox[:2] -= unnormbbox[2:] / 2
|
|
||||||
[bbox_x, bbox_y, bbox_w, bbox_h] = unnormbbox.tolist()
|
|
||||||
boxes.append([bbox_x, bbox_y, bbox_w, bbox_h])
|
|
||||||
poly = [
|
|
||||||
[bbox_x, bbox_y],
|
|
||||||
[bbox_x, bbox_y + bbox_h],
|
|
||||||
[bbox_x + bbox_w, bbox_y + bbox_h],
|
|
||||||
[bbox_x + bbox_w, bbox_y],
|
|
||||||
]
|
|
||||||
np_poly = np.array(poly).reshape((4, 2))
|
|
||||||
polygons.append(Polygon(np_poly))
|
|
||||||
c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
|
|
||||||
color.append(c)
|
|
||||||
|
|
||||||
p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.1)
|
|
||||||
ax.add_collection(p)
|
|
||||||
p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2)
|
|
||||||
ax.add_collection(p)
|
|
||||||
|
|
||||||
if "strings_positive" in tgt and len(tgt["strings_positive"]) > 0:
|
|
||||||
assert (
|
|
||||||
len(tgt["strings_positive"]) == numbox
|
|
||||||
), f"{len(tgt['strings_positive'])} = {numbox}, "
|
|
||||||
for idx, strlist in enumerate(tgt["strings_positive"]):
|
|
||||||
cate_id = int(tgt["labels"][idx])
|
|
||||||
_string = str(cate_id) + ":" + " ".join(strlist)
|
|
||||||
bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx]
|
|
||||||
# ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1})
|
|
||||||
ax.text(
|
|
||||||
bbox_x,
|
|
||||||
bbox_y,
|
|
||||||
_string,
|
|
||||||
color="black",
|
|
||||||
bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1},
|
|
||||||
)
|
|
||||||
|
|
||||||
if "box_label" in tgt:
|
|
||||||
assert (
|
|
||||||
len(tgt["box_label"]) == numbox
|
|
||||||
), f"{len(tgt['box_label'])} = {numbox}, "
|
|
||||||
for idx, bl in enumerate(tgt["box_label"]):
|
|
||||||
_string = str(bl)
|
|
||||||
bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx]
|
|
||||||
# ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1})
|
|
||||||
ax.text(
|
|
||||||
bbox_x,
|
|
||||||
bbox_y,
|
|
||||||
_string,
|
|
||||||
color="black",
|
|
||||||
bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1},
|
|
||||||
)
|
|
||||||
|
|
||||||
if "caption" in tgt:
|
|
||||||
ax.set_title(tgt["caption"], wrap=True)
|
|
||||||
# plt.figure()
|
|
||||||
# rainbow_text(0.0,0.0,"all unicorns poop rainbows ! ! !".split(),
|
|
||||||
# ['red', 'orange', 'brown', 'green', 'blue', 'purple', 'black'])
|
|
||||||
|
|
||||||
if "attn" in tgt:
|
|
||||||
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
|
||||||
# import ipdb; ipdb.set_trace()
|
|
||||||
if isinstance(tgt["attn"], tuple):
|
|
||||||
tgt["attn"] = [tgt["attn"]]
|
|
||||||
for item in tgt["attn"]:
|
|
||||||
attn_map, basergb = item
|
|
||||||
attn_map = (attn_map - attn_map.min()) / (
|
|
||||||
attn_map.max() - attn_map.min() + 1e-3
|
|
||||||
)
|
|
||||||
attn_map = (attn_map * 255).astype(np.uint8)
|
|
||||||
cm = ColorMap(basergb)
|
|
||||||
heatmap = cm(attn_map)
|
|
||||||
ax.imshow(heatmap)
|
|
||||||
ax.set_axis_off()
|
|
||||||
|
|
||||||
def showAnns(self, anns, draw_bbox=False):
|
|
||||||
"""
|
|
||||||
Display the specified annotations.
|
|
||||||
:param anns (array of object): annotations to display
|
|
||||||
:return: None
|
|
||||||
"""
|
|
||||||
if len(anns) == 0:
|
|
||||||
return 0
|
|
||||||
if "segmentation" in anns[0] or "keypoints" in anns[0]:
|
|
||||||
datasetType = "instances"
|
|
||||||
elif "caption" in anns[0]:
|
|
||||||
datasetType = "captions"
|
|
||||||
else:
|
|
||||||
raise Exception("datasetType not supported")
|
|
||||||
if datasetType == "instances":
|
|
||||||
ax = plt.gca()
|
|
||||||
ax.set_autoscale_on(False)
|
|
||||||
polygons = []
|
|
||||||
color = []
|
|
||||||
for ann in anns:
|
|
||||||
c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
|
|
||||||
if "segmentation" in ann:
|
|
||||||
if isinstance(ann["segmentation"], list):
|
|
||||||
# polygon
|
|
||||||
for seg in ann["segmentation"]:
|
|
||||||
poly = np.array(seg).reshape((int(len(seg) / 2), 2))
|
|
||||||
polygons.append(Polygon(poly))
|
|
||||||
color.append(c)
|
|
||||||
else:
|
|
||||||
# mask
|
|
||||||
t = self.imgs[ann["image_id"]]
|
|
||||||
if isinstance(ann["segmentation"]["counts"], list):
|
|
||||||
rle = maskUtils.frPyObjects(
|
|
||||||
[ann["segmentation"]], t["height"], t["width"]
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
rle = [ann["segmentation"]]
|
|
||||||
m = maskUtils.decode(rle)
|
|
||||||
img = np.ones((m.shape[0], m.shape[1], 3))
|
|
||||||
if ann["iscrowd"] == 1:
|
|
||||||
color_mask = np.array([2.0, 166.0, 101.0]) / 255
|
|
||||||
if ann["iscrowd"] == 0:
|
|
||||||
color_mask = np.random.random((1, 3)).tolist()[0]
|
|
||||||
for i in range(3):
|
|
||||||
img[:, :, i] = color_mask[i]
|
|
||||||
ax.imshow(np.dstack((img, m * 0.5)))
|
|
||||||
if "keypoints" in ann and isinstance(ann["keypoints"], list):
|
|
||||||
# turn skeleton into zero-based index
|
|
||||||
sks = np.array(self.loadCats(ann["category_id"])[0]["skeleton"]) - 1
|
|
||||||
kp = np.array(ann["keypoints"])
|
|
||||||
x = kp[0::3]
|
|
||||||
y = kp[1::3]
|
|
||||||
v = kp[2::3]
|
|
||||||
for sk in sks:
|
|
||||||
if np.all(v[sk] > 0):
|
|
||||||
plt.plot(x[sk], y[sk], linewidth=3, color=c)
|
|
||||||
plt.plot(
|
|
||||||
x[v > 0],
|
|
||||||
y[v > 0],
|
|
||||||
"o",
|
|
||||||
markersize=8,
|
|
||||||
markerfacecolor=c,
|
|
||||||
markeredgecolor="k",
|
|
||||||
markeredgewidth=2,
|
|
||||||
)
|
|
||||||
plt.plot(
|
|
||||||
x[v > 1],
|
|
||||||
y[v > 1],
|
|
||||||
"o",
|
|
||||||
markersize=8,
|
|
||||||
markerfacecolor=c,
|
|
||||||
markeredgecolor=c,
|
|
||||||
markeredgewidth=2,
|
|
||||||
)
|
|
||||||
|
|
||||||
if draw_bbox:
|
|
||||||
[bbox_x, bbox_y, bbox_w, bbox_h] = ann["bbox"]
|
|
||||||
poly = [
|
|
||||||
[bbox_x, bbox_y],
|
|
||||||
[bbox_x, bbox_y + bbox_h],
|
|
||||||
[bbox_x + bbox_w, bbox_y + bbox_h],
|
|
||||||
[bbox_x + bbox_w, bbox_y],
|
|
||||||
]
|
|
||||||
np_poly = np.array(poly).reshape((4, 2))
|
|
||||||
polygons.append(Polygon(np_poly))
|
|
||||||
color.append(c)
|
|
||||||
|
|
||||||
# p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4)
|
|
||||||
# ax.add_collection(p)
|
|
||||||
p = PatchCollection(
|
|
||||||
polygons, facecolor="none", edgecolors=color, linewidths=2
|
|
||||||
)
|
|
||||||
ax.add_collection(p)
|
|
||||||
elif datasetType == "captions":
|
|
||||||
for ann in anns:
|
|
||||||
print(ann["caption"])
|
|
@ -1,100 +0,0 @@
|
|||||||
import os
|
|
||||||
import random
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
|
|
||||||
def create_positive_map_from_span(tokenized, token_span, max_text_len=256):
|
|
||||||
"""construct a map such that positive_map[i,j] = True iff box i is associated to token j
|
|
||||||
Input:
|
|
||||||
- tokenized:
|
|
||||||
- input_ids: Tensor[1, ntokens]
|
|
||||||
- attention_mask: Tensor[1, ntokens]
|
|
||||||
- token_span: list with length num_boxes.
|
|
||||||
- each item: [start_idx, end_idx]
|
|
||||||
"""
|
|
||||||
positive_map = torch.zeros((len(token_span), max_text_len), dtype=torch.float)
|
|
||||||
for j, tok_list in enumerate(token_span):
|
|
||||||
for beg, end in tok_list:
|
|
||||||
beg_pos = tokenized.char_to_token(beg)
|
|
||||||
end_pos = tokenized.char_to_token(end - 1)
|
|
||||||
if beg_pos is None:
|
|
||||||
try:
|
|
||||||
beg_pos = tokenized.char_to_token(beg + 1)
|
|
||||||
if beg_pos is None:
|
|
||||||
beg_pos = tokenized.char_to_token(beg + 2)
|
|
||||||
except BaseException:
|
|
||||||
beg_pos = None
|
|
||||||
if end_pos is None:
|
|
||||||
try:
|
|
||||||
end_pos = tokenized.char_to_token(end - 2)
|
|
||||||
if end_pos is None:
|
|
||||||
end_pos = tokenized.char_to_token(end - 3)
|
|
||||||
except BaseException:
|
|
||||||
end_pos = None
|
|
||||||
if beg_pos is None or end_pos is None:
|
|
||||||
continue
|
|
||||||
|
|
||||||
assert beg_pos is not None and end_pos is not None
|
|
||||||
if os.environ.get("SHILONG_DEBUG_ONLY_ONE_POS", None) == "TRUE":
|
|
||||||
positive_map[j, beg_pos] = 1
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
positive_map[j, beg_pos : end_pos + 1].fill_(1)
|
|
||||||
|
|
||||||
return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)
|
|
||||||
|
|
||||||
|
|
||||||
def build_captions_and_token_span(cat_list, force_lowercase):
|
|
||||||
"""
|
|
||||||
Return:
|
|
||||||
captions: str
|
|
||||||
cat2tokenspan: dict
|
|
||||||
{
|
|
||||||
'dog': [[0, 2]],
|
|
||||||
...
|
|
||||||
}
|
|
||||||
"""
|
|
||||||
|
|
||||||
cat2tokenspan = {}
|
|
||||||
captions = ""
|
|
||||||
for catname in cat_list:
|
|
||||||
class_name = catname
|
|
||||||
if force_lowercase:
|
|
||||||
class_name = class_name.lower()
|
|
||||||
if "/" in class_name:
|
|
||||||
class_name_list: List = class_name.strip().split("/")
|
|
||||||
class_name_list.append(class_name)
|
|
||||||
class_name: str = random.choice(class_name_list)
|
|
||||||
|
|
||||||
tokens_positive_i = []
|
|
||||||
subnamelist = [i.strip() for i in class_name.strip().split(" ")]
|
|
||||||
for subname in subnamelist:
|
|
||||||
if len(subname) == 0:
|
|
||||||
continue
|
|
||||||
if len(captions) > 0:
|
|
||||||
captions = captions + " "
|
|
||||||
strat_idx = len(captions)
|
|
||||||
end_idx = strat_idx + len(subname)
|
|
||||||
tokens_positive_i.append([strat_idx, end_idx])
|
|
||||||
captions = captions + subname
|
|
||||||
|
|
||||||
if len(tokens_positive_i) > 0:
|
|
||||||
captions = captions + " ."
|
|
||||||
cat2tokenspan[class_name] = tokens_positive_i
|
|
||||||
|
|
||||||
return captions, cat2tokenspan
|
|
||||||
|
|
||||||
|
|
||||||
def build_id2posspan_and_caption(category_dict: dict):
|
|
||||||
"""Build id2pos_span and caption from category_dict
|
|
||||||
|
|
||||||
Args:
|
|
||||||
category_dict (dict): category_dict
|
|
||||||
"""
|
|
||||||
cat_list = [item["name"].lower() for item in category_dict]
|
|
||||||
id2catname = {item["id"]: item["name"].lower() for item in category_dict}
|
|
||||||
caption, cat2posspan = build_captions_and_token_span(cat_list, force_lowercase=True)
|
|
||||||
id2posspan = {catid: cat2posspan[catname] for catid, catname in id2catname.items()}
|
|
||||||
return id2posspan, caption
|
|
@ -1,7 +0,0 @@
|
|||||||
[flake8]
|
|
||||||
ignore = W503, E203, E221, C901, C408, E741, C407, B017, F811, C101, EXE001, EXE002
|
|
||||||
max-line-length = 100
|
|
||||||
max-complexity = 18
|
|
||||||
select = B,C,E,F,W,T4,B9
|
|
||||||
per-file-ignores =
|
|
||||||
**/__init__.py:F401,F403,E402
|
|
@ -1,42 +0,0 @@
|
|||||||
.nfs*
|
|
||||||
|
|
||||||
# compilation and distribution
|
|
||||||
__pycache__
|
|
||||||
_ext
|
|
||||||
*.pyc
|
|
||||||
*.pyd
|
|
||||||
*.so
|
|
||||||
*.dll
|
|
||||||
*.egg-info/
|
|
||||||
build/
|
|
||||||
dist/
|
|
||||||
wheels/
|
|
||||||
|
|
||||||
# pytorch/python/numpy formats
|
|
||||||
*.pth
|
|
||||||
*.pkl
|
|
||||||
*.npy
|
|
||||||
*.ts
|
|
||||||
model_ts*.txt
|
|
||||||
|
|
||||||
# onnx models
|
|
||||||
*.onnx
|
|
||||||
|
|
||||||
# ipython/jupyter notebooks
|
|
||||||
**/.ipynb_checkpoints/
|
|
||||||
|
|
||||||
# Editor temporaries
|
|
||||||
*.swn
|
|
||||||
*.swo
|
|
||||||
*.swp
|
|
||||||
*~
|
|
||||||
|
|
||||||
# editor settings
|
|
||||||
.idea
|
|
||||||
.vscode
|
|
||||||
_darcs
|
|
||||||
|
|
||||||
# demo
|
|
||||||
**/node_modules
|
|
||||||
yarn.lock
|
|
||||||
package-lock.json
|
|
@ -1,80 +0,0 @@
|
|||||||
# Code of Conduct
|
|
||||||
|
|
||||||
## Our Pledge
|
|
||||||
|
|
||||||
In the interest of fostering an open and welcoming environment, we as
|
|
||||||
contributors and maintainers pledge to make participation in our project and
|
|
||||||
our community a harassment-free experience for everyone, regardless of age, body
|
|
||||||
size, disability, ethnicity, sex characteristics, gender identity and expression,
|
|
||||||
level of experience, education, socio-economic status, nationality, personal
|
|
||||||
appearance, race, religion, or sexual identity and orientation.
|
|
||||||
|
|
||||||
## Our Standards
|
|
||||||
|
|
||||||
Examples of behavior that contributes to creating a positive environment
|
|
||||||
include:
|
|
||||||
|
|
||||||
* Using welcoming and inclusive language
|
|
||||||
* Being respectful of differing viewpoints and experiences
|
|
||||||
* Gracefully accepting constructive criticism
|
|
||||||
* Focusing on what is best for the community
|
|
||||||
* Showing empathy towards other community members
|
|
||||||
|
|
||||||
Examples of unacceptable behavior by participants include:
|
|
||||||
|
|
||||||
* The use of sexualized language or imagery and unwelcome sexual attention or
|
|
||||||
advances
|
|
||||||
* Trolling, insulting/derogatory comments, and personal or political attacks
|
|
||||||
* Public or private harassment
|
|
||||||
* Publishing others' private information, such as a physical or electronic
|
|
||||||
address, without explicit permission
|
|
||||||
* Other conduct which could reasonably be considered inappropriate in a
|
|
||||||
professional setting
|
|
||||||
|
|
||||||
## Our Responsibilities
|
|
||||||
|
|
||||||
Project maintainers are responsible for clarifying the standards of acceptable
|
|
||||||
behavior and are expected to take appropriate and fair corrective action in
|
|
||||||
response to any instances of unacceptable behavior.
|
|
||||||
|
|
||||||
Project maintainers have the right and responsibility to remove, edit, or
|
|
||||||
reject comments, commits, code, wiki edits, issues, and other contributions
|
|
||||||
that are not aligned to this Code of Conduct, or to ban temporarily or
|
|
||||||
permanently any contributor for other behaviors that they deem inappropriate,
|
|
||||||
threatening, offensive, or harmful.
|
|
||||||
|
|
||||||
## Scope
|
|
||||||
|
|
||||||
This Code of Conduct applies within all project spaces, and it also applies when
|
|
||||||
an individual is representing the project or its community in public spaces.
|
|
||||||
Examples of representing a project or community include using an official
|
|
||||||
project e-mail address, posting via an official social media account, or acting
|
|
||||||
as an appointed representative at an online or offline event. Representation of
|
|
||||||
a project may be further defined and clarified by project maintainers.
|
|
||||||
|
|
||||||
This Code of Conduct also applies outside the project spaces when there is a
|
|
||||||
reasonable belief that an individual's behavior may have a negative impact on
|
|
||||||
the project or its community.
|
|
||||||
|
|
||||||
## Enforcement
|
|
||||||
|
|
||||||
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
|
||||||
reported by contacting the project team at <opensource-conduct@fb.com>. All
|
|
||||||
complaints will be reviewed and investigated and will result in a response that
|
|
||||||
is deemed necessary and appropriate to the circumstances. The project team is
|
|
||||||
obligated to maintain confidentiality with regard to the reporter of an incident.
|
|
||||||
Further details of specific enforcement policies may be posted separately.
|
|
||||||
|
|
||||||
Project maintainers who do not follow or enforce the Code of Conduct in good
|
|
||||||
faith may face temporary or permanent repercussions as determined by other
|
|
||||||
members of the project's leadership.
|
|
||||||
|
|
||||||
## Attribution
|
|
||||||
|
|
||||||
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
|
|
||||||
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
|
|
||||||
|
|
||||||
[homepage]: https://www.contributor-covenant.org
|
|
||||||
|
|
||||||
For answers to common questions about this code of conduct, see
|
|
||||||
https://www.contributor-covenant.org/faq
|
|
@ -1,31 +0,0 @@
|
|||||||
# Contributing to segment-anything
|
|
||||||
We want to make contributing to this project as easy and transparent as
|
|
||||||
possible.
|
|
||||||
|
|
||||||
## Pull Requests
|
|
||||||
We actively welcome your pull requests.
|
|
||||||
|
|
||||||
1. Fork the repo and create your branch from `main`.
|
|
||||||
2. If you've added code that should be tested, add tests.
|
|
||||||
3. If you've changed APIs, update the documentation.
|
|
||||||
4. Ensure the test suite passes.
|
|
||||||
5. Make sure your code lints, using the `linter.sh` script in the project's root directory. Linting requires `black==23.*`, `isort==5.12.0`, `flake8`, and `mypy`.
|
|
||||||
6. If you haven't already, complete the Contributor License Agreement ("CLA").
|
|
||||||
|
|
||||||
## Contributor License Agreement ("CLA")
|
|
||||||
In order to accept your pull request, we need you to submit a CLA. You only need
|
|
||||||
to do this once to work on any of Facebook's open source projects.
|
|
||||||
|
|
||||||
Complete your CLA here: <https://code.facebook.com/cla>
|
|
||||||
|
|
||||||
## Issues
|
|
||||||
We use GitHub issues to track public bugs. Please ensure your description is
|
|
||||||
clear and has sufficient instructions to be able to reproduce the issue.
|
|
||||||
|
|
||||||
Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
|
|
||||||
disclosure of security bugs. In those cases, please go through the process
|
|
||||||
outlined on that page and do not file a public issue.
|
|
||||||
|
|
||||||
## License
|
|
||||||
By contributing to segment-anything, you agree that your contributions will be licensed
|
|
||||||
under the LICENSE file in the root directory of this source tree.
|
|
@ -1,201 +0,0 @@
|
|||||||
Apache License
|
|
||||||
Version 2.0, January 2004
|
|
||||||
http://www.apache.org/licenses/
|
|
||||||
|
|
||||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
||||||
|
|
||||||
1. Definitions.
|
|
||||||
|
|
||||||
"License" shall mean the terms and conditions for use, reproduction,
|
|
||||||
and distribution as defined by Sections 1 through 9 of this document.
|
|
||||||
|
|
||||||
"Licensor" shall mean the copyright owner or entity authorized by
|
|
||||||
the copyright owner that is granting the License.
|
|
||||||
|
|
||||||
"Legal Entity" shall mean the union of the acting entity and all
|
|
||||||
other entities that control, are controlled by, or are under common
|
|
||||||
control with that entity. For the purposes of this definition,
|
|
||||||
"control" means (i) the power, direct or indirect, to cause the
|
|
||||||
direction or management of such entity, whether by contract or
|
|
||||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
||||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
||||||
|
|
||||||
"You" (or "Your") shall mean an individual or Legal Entity
|
|
||||||
exercising permissions granted by this License.
|
|
||||||
|
|
||||||
"Source" form shall mean the preferred form for making modifications,
|
|
||||||
including but not limited to software source code, documentation
|
|
||||||
source, and configuration files.
|
|
||||||
|
|
||||||
"Object" form shall mean any form resulting from mechanical
|
|
||||||
transformation or translation of a Source form, including but
|
|
||||||
not limited to compiled object code, generated documentation,
|
|
||||||
and conversions to other media types.
|
|
||||||
|
|
||||||
"Work" shall mean the work of authorship, whether in Source or
|
|
||||||
Object form, made available under the License, as indicated by a
|
|
||||||
copyright notice that is included in or attached to the work
|
|
||||||
(an example is provided in the Appendix below).
|
|
||||||
|
|
||||||
"Derivative Works" shall mean any work, whether in Source or Object
|
|
||||||
form, that is based on (or derived from) the Work and for which the
|
|
||||||
editorial revisions, annotations, elaborations, or other modifications
|
|
||||||
represent, as a whole, an original work of authorship. For the purposes
|
|
||||||
of this License, Derivative Works shall not include works that remain
|
|
||||||
separable from, or merely link (or bind by name) to the interfaces of,
|
|
||||||
the Work and Derivative Works thereof.
|
|
||||||
|
|
||||||
"Contribution" shall mean any work of authorship, including
|
|
||||||
the original version of the Work and any modifications or additions
|
|
||||||
to that Work or Derivative Works thereof, that is intentionally
|
|
||||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
||||||
or by an individual or Legal Entity authorized to submit on behalf of
|
|
||||||
the copyright owner. For the purposes of this definition, "submitted"
|
|
||||||
means any form of electronic, verbal, or written communication sent
|
|
||||||
to the Licensor or its representatives, including but not limited to
|
|
||||||
communication on electronic mailing lists, source code control systems,
|
|
||||||
and issue tracking systems that are managed by, or on behalf of, the
|
|
||||||
Licensor for the purpose of discussing and improving the Work, but
|
|
||||||
excluding communication that is conspicuously marked or otherwise
|
|
||||||
designated in writing by the copyright owner as "Not a Contribution."
|
|
||||||
|
|
||||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
||||||
on behalf of whom a Contribution has been received by Licensor and
|
|
||||||
subsequently incorporated within the Work.
|
|
||||||
|
|
||||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
||||||
this License, each Contributor hereby grants to You a perpetual,
|
|
||||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
||||||
copyright license to reproduce, prepare Derivative Works of,
|
|
||||||
publicly display, publicly perform, sublicense, and distribute the
|
|
||||||
Work and such Derivative Works in Source or Object form.
|
|
||||||
|
|
||||||
3. Grant of Patent License. Subject to the terms and conditions of
|
|
||||||
this License, each Contributor hereby grants to You a perpetual,
|
|
||||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
||||||
(except as stated in this section) patent license to make, have made,
|
|
||||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
||||||
where such license applies only to those patent claims licensable
|
|
||||||
by such Contributor that are necessarily infringed by their
|
|
||||||
Contribution(s) alone or by combination of their Contribution(s)
|
|
||||||
with the Work to which such Contribution(s) was submitted. If You
|
|
||||||
institute patent litigation against any entity (including a
|
|
||||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
||||||
or a Contribution incorporated within the Work constitutes direct
|
|
||||||
or contributory patent infringement, then any patent licenses
|
|
||||||
granted to You under this License for that Work shall terminate
|
|
||||||
as of the date such litigation is filed.
|
|
||||||
|
|
||||||
4. Redistribution. You may reproduce and distribute copies of the
|
|
||||||
Work or Derivative Works thereof in any medium, with or without
|
|
||||||
modifications, and in Source or Object form, provided that You
|
|
||||||
meet the following conditions:
|
|
||||||
|
|
||||||
(a) You must give any other recipients of the Work or
|
|
||||||
Derivative Works a copy of this License; and
|
|
||||||
|
|
||||||
(b) You must cause any modified files to carry prominent notices
|
|
||||||
stating that You changed the files; and
|
|
||||||
|
|
||||||
(c) You must retain, in the Source form of any Derivative Works
|
|
||||||
that You distribute, all copyright, patent, trademark, and
|
|
||||||
attribution notices from the Source form of the Work,
|
|
||||||
excluding those notices that do not pertain to any part of
|
|
||||||
the Derivative Works; and
|
|
||||||
|
|
||||||
(d) If the Work includes a "NOTICE" text file as part of its
|
|
||||||
distribution, then any Derivative Works that You distribute must
|
|
||||||
include a readable copy of the attribution notices contained
|
|
||||||
within such NOTICE file, excluding those notices that do not
|
|
||||||
pertain to any part of the Derivative Works, in at least one
|
|
||||||
of the following places: within a NOTICE text file distributed
|
|
||||||
as part of the Derivative Works; within the Source form or
|
|
||||||
documentation, if provided along with the Derivative Works; or,
|
|
||||||
within a display generated by the Derivative Works, if and
|
|
||||||
wherever such third-party notices normally appear. The contents
|
|
||||||
of the NOTICE file are for informational purposes only and
|
|
||||||
do not modify the License. You may add Your own attribution
|
|
||||||
notices within Derivative Works that You distribute, alongside
|
|
||||||
or as an addendum to the NOTICE text from the Work, provided
|
|
||||||
that such additional attribution notices cannot be construed
|
|
||||||
as modifying the License.
|
|
||||||
|
|
||||||
You may add Your own copyright statement to Your modifications and
|
|
||||||
may provide additional or different license terms and conditions
|
|
||||||
for use, reproduction, or distribution of Your modifications, or
|
|
||||||
for any such Derivative Works as a whole, provided Your use,
|
|
||||||
reproduction, and distribution of the Work otherwise complies with
|
|
||||||
the conditions stated in this License.
|
|
||||||
|
|
||||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
||||||
any Contribution intentionally submitted for inclusion in the Work
|
|
||||||
by You to the Licensor shall be under the terms and conditions of
|
|
||||||
this License, without any additional terms or conditions.
|
|
||||||
Notwithstanding the above, nothing herein shall supersede or modify
|
|
||||||
the terms of any separate license agreement you may have executed
|
|
||||||
with Licensor regarding such Contributions.
|
|
||||||
|
|
||||||
6. Trademarks. This License does not grant permission to use the trade
|
|
||||||
names, trademarks, service marks, or product names of the Licensor,
|
|
||||||
except as required for reasonable and customary use in describing the
|
|
||||||
origin of the Work and reproducing the content of the NOTICE file.
|
|
||||||
|
|
||||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
||||||
agreed to in writing, Licensor provides the Work (and each
|
|
||||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
||||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
||||||
implied, including, without limitation, any warranties or conditions
|
|
||||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
||||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
||||||
appropriateness of using or redistributing the Work and assume any
|
|
||||||
risks associated with Your exercise of permissions under this License.
|
|
||||||
|
|
||||||
8. Limitation of Liability. In no event and under no legal theory,
|
|
||||||
whether in tort (including negligence), contract, or otherwise,
|
|
||||||
unless required by applicable law (such as deliberate and grossly
|
|
||||||
negligent acts) or agreed to in writing, shall any Contributor be
|
|
||||||
liable to You for damages, including any direct, indirect, special,
|
|
||||||
incidental, or consequential damages of any character arising as a
|
|
||||||
result of this License or out of the use or inability to use the
|
|
||||||
Work (including but not limited to damages for loss of goodwill,
|
|
||||||
work stoppage, computer failure or malfunction, or any and all
|
|
||||||
other commercial damages or losses), even if such Contributor
|
|
||||||
has been advised of the possibility of such damages.
|
|
||||||
|
|
||||||
9. Accepting Warranty or Additional Liability. While redistributing
|
|
||||||
the Work or Derivative Works thereof, You may choose to offer,
|
|
||||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
||||||
or other liability obligations and/or rights consistent with this
|
|
||||||
License. However, in accepting such obligations, You may act only
|
|
||||||
on Your own behalf and on Your sole responsibility, not on behalf
|
|
||||||
of any other Contributor, and only if You agree to indemnify,
|
|
||||||
defend, and hold each Contributor harmless for any liability
|
|
||||||
incurred by, or claims asserted against, such Contributor by reason
|
|
||||||
of your accepting any such warranty or additional liability.
|
|
||||||
|
|
||||||
END OF TERMS AND CONDITIONS
|
|
||||||
|
|
||||||
APPENDIX: How to apply the Apache License to your work.
|
|
||||||
|
|
||||||
To apply the Apache License to your work, attach the following
|
|
||||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
|
||||||
replaced with your own identifying information. (Don't include
|
|
||||||
the brackets!) The text should be enclosed in the appropriate
|
|
||||||
comment syntax for the file format. We also recommend that a
|
|
||||||
file or class name and description of purpose be included on the
|
|
||||||
same "printed page" as the copyright notice for easier
|
|
||||||
identification within third-party archives.
|
|
||||||
|
|
||||||
Copyright [yyyy] [name of copyright owner]
|
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
you may not use this file except in compliance with the License.
|
|
||||||
You may obtain a copy of the License at
|
|
||||||
|
|
||||||
http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
|
|
||||||
Unless required by applicable law or agreed to in writing, software
|
|
||||||
distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
See the License for the specific language governing permissions and
|
|
||||||
limitations under the License.
|
|
@ -1,171 +0,0 @@
|
|||||||
# Segment Anything
|
|
||||||
|
|
||||||
**[Meta AI Research, FAIR](https://ai.facebook.com/research/)**
|
|
||||||
|
|
||||||
[Alexander Kirillov](https://alexander-kirillov.github.io/), [Eric Mintun](https://ericmintun.github.io/), [Nikhila Ravi](https://nikhilaravi.com/), [Hanzi Mao](https://hanzimao.me/), Chloe Rolland, Laura Gustafson, [Tete Xiao](https://tetexiao.com), [Spencer Whitehead](https://www.spencerwhitehead.com/), Alex Berg, Wan-Yen Lo, [Piotr Dollar](https://pdollar.github.io/), [Ross Girshick](https://www.rossgirshick.info/)
|
|
||||||
|
|
||||||
[[`Paper`](https://ai.facebook.com/research/publications/segment-anything/)] [[`Project`](https://segment-anything.com/)] [[`Demo`](https://segment-anything.com/demo)] [[`Dataset`](https://segment-anything.com/dataset/index.html)] [[`Blog`](https://ai.facebook.com/blog/segment-anything-foundation-model-image-segmentation/)] [[`BibTeX`](#citing-segment-anything)]
|
|
||||||
|
|
||||||
![SAM design](assets/model_diagram.png?raw=true)
|
|
||||||
|
|
||||||
The **Segment Anything Model (SAM)** produces high quality object masks from input prompts such as points or boxes, and it can be used to generate masks for all objects in an image. It has been trained on a [dataset](https://segment-anything.com/dataset/index.html) of 11 million images and 1.1 billion masks, and has strong zero-shot performance on a variety of segmentation tasks.
|
|
||||||
|
|
||||||
<p float="left">
|
|
||||||
<img src="assets/masks1.png?raw=true" width="37.25%" />
|
|
||||||
<img src="assets/masks2.jpg?raw=true" width="61.5%" />
|
|
||||||
</p>
|
|
||||||
|
|
||||||
## Installation
|
|
||||||
|
|
||||||
The code requires `python>=3.8`, as well as `pytorch>=1.7` and `torchvision>=0.8`. Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended.
|
|
||||||
|
|
||||||
Install Segment Anything:
|
|
||||||
|
|
||||||
```
|
|
||||||
pip install git+https://github.com/facebookresearch/segment-anything.git
|
|
||||||
```
|
|
||||||
|
|
||||||
or clone the repository locally and install with
|
|
||||||
|
|
||||||
```
|
|
||||||
git clone git@github.com:facebookresearch/segment-anything.git
|
|
||||||
cd segment-anything; pip install -e .
|
|
||||||
```
|
|
||||||
|
|
||||||
The following optional dependencies are necessary for mask post-processing, saving masks in COCO format, the example notebooks, and exporting the model in ONNX format. `jupyter` is also required to run the example notebooks.
|
|
||||||
|
|
||||||
```
|
|
||||||
pip install opencv-python pycocotools matplotlib onnxruntime onnx
|
|
||||||
```
|
|
||||||
|
|
||||||
## <a name="GettingStarted"></a>Getting Started
|
|
||||||
|
|
||||||
First download a [model checkpoint](#model-checkpoints). Then the model can be used in just a few lines to get masks from a given prompt:
|
|
||||||
|
|
||||||
```
|
|
||||||
from segment_anything import SamPredictor, sam_model_registry
|
|
||||||
sam = sam_model_registry["<model_type>"](checkpoint="<path/to/checkpoint>")
|
|
||||||
predictor = SamPredictor(sam)
|
|
||||||
predictor.set_image(<your_image>)
|
|
||||||
masks, _, _ = predictor.predict(<input_prompts>)
|
|
||||||
```
|
|
||||||
|
|
||||||
or generate masks for an entire image:
|
|
||||||
|
|
||||||
```
|
|
||||||
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
|
|
||||||
sam = sam_model_registry["<model_type>"](checkpoint="<path/to/checkpoint>")
|
|
||||||
mask_generator = SamAutomaticMaskGenerator(sam)
|
|
||||||
masks = mask_generator.generate(<your_image>)
|
|
||||||
```
|
|
||||||
|
|
||||||
Additionally, masks can be generated for images from the command line:
|
|
||||||
|
|
||||||
```
|
|
||||||
python scripts/amg.py --checkpoint <path/to/checkpoint> --model-type <model_type> --input <image_or_folder> --output <path/to/output>
|
|
||||||
```
|
|
||||||
|
|
||||||
See the examples notebooks on [using SAM with prompts](/notebooks/predictor_example.ipynb) and [automatically generating masks](/notebooks/automatic_mask_generator_example.ipynb) for more details.
|
|
||||||
|
|
||||||
<p float="left">
|
|
||||||
<img src="assets/notebook1.png?raw=true" width="49.1%" />
|
|
||||||
<img src="assets/notebook2.png?raw=true" width="48.9%" />
|
|
||||||
</p>
|
|
||||||
|
|
||||||
## ONNX Export
|
|
||||||
|
|
||||||
SAM's lightweight mask decoder can be exported to ONNX format so that it can be run in any environment that supports ONNX runtime, such as in-browser as showcased in the [demo](https://segment-anything.com/demo). Export the model with
|
|
||||||
|
|
||||||
```
|
|
||||||
python scripts/export_onnx_model.py --checkpoint <path/to/checkpoint> --model-type <model_type> --output <path/to/output>
|
|
||||||
```
|
|
||||||
|
|
||||||
See the [example notebook](https://github.com/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb) for details on how to combine image preprocessing via SAM's backbone with mask prediction using the ONNX model. It is recommended to use the latest stable version of PyTorch for ONNX export.
|
|
||||||
|
|
||||||
### Web demo
|
|
||||||
|
|
||||||
The `demo/` folder has a simple one page React app which shows how to run mask prediction with the exported ONNX model in a web browser with multithreading. Please see [`demo/README.md`](https://github.com/facebookresearch/segment-anything/blob/main/demo/README.md) for more details.
|
|
||||||
|
|
||||||
## <a name="Models"></a>Model Checkpoints
|
|
||||||
|
|
||||||
Three model versions of the model are available with different backbone sizes. These models can be instantiated by running
|
|
||||||
|
|
||||||
```
|
|
||||||
from segment_anything import sam_model_registry
|
|
||||||
sam = sam_model_registry["<model_type>"](checkpoint="<path/to/checkpoint>")
|
|
||||||
```
|
|
||||||
|
|
||||||
Click the links below to download the checkpoint for the corresponding model type.
|
|
||||||
|
|
||||||
- **`default` or `vit_h`: [ViT-H SAM model.](https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth)**
|
|
||||||
- `vit_l`: [ViT-L SAM model.](https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth)
|
|
||||||
- `vit_b`: [ViT-B SAM model.](https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth)
|
|
||||||
|
|
||||||
## Dataset
|
|
||||||
|
|
||||||
See [here](https://ai.facebook.com/datasets/segment-anything/) for an overview of the datastet. The dataset can be downloaded [here](https://ai.facebook.com/datasets/segment-anything-downloads/). By downloading the datasets you agree that you have read and accepted the terms of the SA-1B Dataset Research License.
|
|
||||||
|
|
||||||
We save masks per image as a json file. It can be loaded as a dictionary in python in the below format.
|
|
||||||
|
|
||||||
```python
|
|
||||||
{
|
|
||||||
"image" : image_info,
|
|
||||||
"annotations" : [annotation],
|
|
||||||
}
|
|
||||||
|
|
||||||
image_info {
|
|
||||||
"image_id" : int, # Image id
|
|
||||||
"width" : int, # Image width
|
|
||||||
"height" : int, # Image height
|
|
||||||
"file_name" : str, # Image filename
|
|
||||||
}
|
|
||||||
|
|
||||||
annotation {
|
|
||||||
"id" : int, # Annotation id
|
|
||||||
"segmentation" : dict, # Mask saved in COCO RLE format.
|
|
||||||
"bbox" : [x, y, w, h], # The box around the mask, in XYWH format
|
|
||||||
"area" : int, # The area in pixels of the mask
|
|
||||||
"predicted_iou" : float, # The model's own prediction of the mask's quality
|
|
||||||
"stability_score" : float, # A measure of the mask's quality
|
|
||||||
"crop_box" : [x, y, w, h], # The crop of the image used to generate the mask, in XYWH format
|
|
||||||
"point_coords" : [[x, y]], # The point coordinates input to the model to generate the mask
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
Image ids can be found in sa_images_ids.txt which can be downloaded using the above [link](https://ai.facebook.com/datasets/segment-anything-downloads/) as well.
|
|
||||||
|
|
||||||
To decode a mask in COCO RLE format into binary:
|
|
||||||
|
|
||||||
```
|
|
||||||
from pycocotools import mask as mask_utils
|
|
||||||
mask = mask_utils.decode(annotation["segmentation"])
|
|
||||||
```
|
|
||||||
|
|
||||||
See [here](https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py) for more instructions to manipulate masks stored in RLE format.
|
|
||||||
|
|
||||||
## License
|
|
||||||
|
|
||||||
The model is licensed under the [Apache 2.0 license](LICENSE).
|
|
||||||
|
|
||||||
## Contributing
|
|
||||||
|
|
||||||
See [contributing](CONTRIBUTING.md) and the [code of conduct](CODE_OF_CONDUCT.md).
|
|
||||||
|
|
||||||
## Contributors
|
|
||||||
|
|
||||||
The Segment Anything project was made possible with the help of many contributors (alphabetical):
|
|
||||||
|
|
||||||
Aaron Adcock, Vaibhav Aggarwal, Morteza Behrooz, Cheng-Yang Fu, Ashley Gabriel, Ahuva Goldstand, Allen Goodman, Sumanth Gurram, Jiabo Hu, Somya Jain, Devansh Kukreja, Robert Kuo, Joshua Lane, Yanghao Li, Lilian Luong, Jitendra Malik, Mallika Malhotra, William Ngan, Omkar Parkhi, Nikhil Raina, Dirk Rowe, Neil Sejoor, Vanessa Stark, Bala Varadarajan, Bram Wasti, Zachary Winstrom
|
|
||||||
|
|
||||||
## Citing Segment Anything
|
|
||||||
|
|
||||||
If you use SAM or SA-1B in your research, please use the following BibTeX entry.
|
|
||||||
|
|
||||||
```
|
|
||||||
@article{kirillov2023segany,
|
|
||||||
title={Segment Anything},
|
|
||||||
author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
|
|
||||||
journal={arXiv:2304.02643},
|
|
||||||
year={2023}
|
|
||||||
}
|
|
||||||
```
|
|
Before Width: | Height: | Size: 3.5 MiB |
Before Width: | Height: | Size: 130 KiB |
Before Width: | Height: | Size: 1.9 MiB |
Before Width: | Height: | Size: 568 KiB |
Before Width: | Height: | Size: 854 KiB |
Before Width: | Height: | Size: 1.2 MiB |
@ -1,126 +0,0 @@
|
|||||||
## Segment Anything Simple Web demo
|
|
||||||
|
|
||||||
This **front-end only** React based web demo shows how to load a fixed image and corresponding `.npy` file of the SAM image embedding, and run the SAM ONNX model in the browser using Web Assembly with mulithreading enabled by `SharedArrayBuffer`, Web Worker, and SIMD128.
|
|
||||||
|
|
||||||
<img src="https://github.com/facebookresearch/segment-anything/raw/main/assets/minidemo.gif" width="500"/>
|
|
||||||
|
|
||||||
## Run the app
|
|
||||||
|
|
||||||
Install Yarn
|
|
||||||
|
|
||||||
```
|
|
||||||
npm install --g yarn
|
|
||||||
```
|
|
||||||
|
|
||||||
Build and run:
|
|
||||||
|
|
||||||
```
|
|
||||||
yarn && yarn start
|
|
||||||
```
|
|
||||||
|
|
||||||
Navigate to [`http://localhost:8081/`](http://localhost:8081/)
|
|
||||||
|
|
||||||
Move your cursor around to see the mask prediction update in real time.
|
|
||||||
|
|
||||||
## Export the image embedding
|
|
||||||
|
|
||||||
In the [ONNX Model Example notebook](https://github.com/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb) upload the image of your choice and generate and save corresponding embedding.
|
|
||||||
|
|
||||||
Initialize the predictor:
|
|
||||||
|
|
||||||
```python
|
|
||||||
checkpoint = "sam_vit_h_4b8939.pth"
|
|
||||||
model_type = "vit_h"
|
|
||||||
sam = sam_model_registry[model_type](checkpoint=checkpoint)
|
|
||||||
sam.to(device='cuda')
|
|
||||||
predictor = SamPredictor(sam)
|
|
||||||
```
|
|
||||||
|
|
||||||
Set the new image and export the embedding:
|
|
||||||
|
|
||||||
```
|
|
||||||
image = cv2.imread('src/assets/dogs.jpg')
|
|
||||||
predictor.set_image(image)
|
|
||||||
image_embedding = predictor.get_image_embedding().cpu().numpy()
|
|
||||||
np.save("dogs_embedding.npy", image_embedding)
|
|
||||||
```
|
|
||||||
|
|
||||||
Save the new image and embedding in `src/assets/data`.
|
|
||||||
|
|
||||||
## Export the ONNX model
|
|
||||||
|
|
||||||
You also need to export the quantized ONNX model from the [ONNX Model Example notebook](https://github.com/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb).
|
|
||||||
|
|
||||||
Run the cell in the notebook which saves the `sam_onnx_quantized_example.onnx` file, download it and copy it to the path `/model/sam_onnx_quantized_example.onnx`.
|
|
||||||
|
|
||||||
Here is a snippet of the export/quantization code:
|
|
||||||
|
|
||||||
```
|
|
||||||
onnx_model_path = "sam_onnx_example.onnx"
|
|
||||||
onnx_model_quantized_path = "sam_onnx_quantized_example.onnx"
|
|
||||||
quantize_dynamic(
|
|
||||||
model_input=onnx_model_path,
|
|
||||||
model_output=onnx_model_quantized_path,
|
|
||||||
optimize_model=True,
|
|
||||||
per_channel=False,
|
|
||||||
reduce_range=False,
|
|
||||||
weight_type=QuantType.QUInt8,
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
**NOTE: if you change the ONNX model by using a new checkpoint you need to also re-export the embedding.**
|
|
||||||
|
|
||||||
## Update the image, embedding, model in the app
|
|
||||||
|
|
||||||
Update the following file paths at the top of`App.tsx`:
|
|
||||||
|
|
||||||
```py
|
|
||||||
const IMAGE_PATH = "/assets/data/dogs.jpg";
|
|
||||||
const IMAGE_EMBEDDING = "/assets/data/dogs_embedding.npy";
|
|
||||||
const MODEL_DIR = "/model/sam_onnx_quantized_example.onnx";
|
|
||||||
```
|
|
||||||
|
|
||||||
## ONNX multithreading with SharedArrayBuffer
|
|
||||||
|
|
||||||
To use multithreading, the appropriate headers need to be set to create a cross origin isolation state which will enable use of `SharedArrayBuffer` (see this [blog post](https://cloudblogs.microsoft.com/opensource/2021/09/02/onnx-runtime-web-running-your-machine-learning-model-in-browser/) for more details)
|
|
||||||
|
|
||||||
The headers below are set in `configs/webpack/dev.js`:
|
|
||||||
|
|
||||||
```js
|
|
||||||
headers: {
|
|
||||||
"Cross-Origin-Opener-Policy": "same-origin",
|
|
||||||
"Cross-Origin-Embedder-Policy": "credentialless",
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
## Structure of the app
|
|
||||||
|
|
||||||
**`App.tsx`**
|
|
||||||
|
|
||||||
- Initializes ONNX model
|
|
||||||
- Loads image embedding and image
|
|
||||||
- Runs the ONNX model based on input prompts
|
|
||||||
|
|
||||||
**`Stage.tsx`**
|
|
||||||
|
|
||||||
- Handles mouse move interaction to update the ONNX model prompt
|
|
||||||
|
|
||||||
**`Tool.tsx`**
|
|
||||||
|
|
||||||
- Renders the image and the mask prediction
|
|
||||||
|
|
||||||
**`helpers/maskUtils.tsx`**
|
|
||||||
|
|
||||||
- Conversion of ONNX model output from array to an HTMLImageElement
|
|
||||||
|
|
||||||
**`helpers/onnxModelAPI.tsx`**
|
|
||||||
|
|
||||||
- Formats the inputs for the ONNX model
|
|
||||||
|
|
||||||
**`helpers/scaleHelper.tsx`**
|
|
||||||
|
|
||||||
- Handles image scaling logic for SAM (longest size 1024)
|
|
||||||
|
|
||||||
**`hooks/`**
|
|
||||||
|
|
||||||
- Handle shared state for the app
|
|
@ -1,84 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
const { resolve } = require("path");
|
|
||||||
const HtmlWebpackPlugin = require("html-webpack-plugin");
|
|
||||||
const FriendlyErrorsWebpackPlugin = require("friendly-errors-webpack-plugin");
|
|
||||||
const CopyPlugin = require("copy-webpack-plugin");
|
|
||||||
const webpack = require("webpack");
|
|
||||||
|
|
||||||
module.exports = {
|
|
||||||
entry: "./src/index.tsx",
|
|
||||||
resolve: {
|
|
||||||
extensions: [".js", ".jsx", ".ts", ".tsx"],
|
|
||||||
},
|
|
||||||
output: {
|
|
||||||
path: resolve(__dirname, "dist"),
|
|
||||||
},
|
|
||||||
module: {
|
|
||||||
rules: [
|
|
||||||
{
|
|
||||||
test: /\.mjs$/,
|
|
||||||
include: /node_modules/,
|
|
||||||
type: "javascript/auto",
|
|
||||||
resolve: {
|
|
||||||
fullySpecified: false,
|
|
||||||
},
|
|
||||||
},
|
|
||||||
{
|
|
||||||
test: [/\.jsx?$/, /\.tsx?$/],
|
|
||||||
use: ["ts-loader"],
|
|
||||||
exclude: /node_modules/,
|
|
||||||
},
|
|
||||||
{
|
|
||||||
test: /\.css$/,
|
|
||||||
use: ["style-loader", "css-loader"],
|
|
||||||
},
|
|
||||||
{
|
|
||||||
test: /\.(scss|sass)$/,
|
|
||||||
use: ["style-loader", "css-loader", "postcss-loader"],
|
|
||||||
},
|
|
||||||
{
|
|
||||||
test: /\.(jpe?g|png|gif|svg)$/i,
|
|
||||||
use: [
|
|
||||||
"file-loader?hash=sha512&digest=hex&name=img/[contenthash].[ext]",
|
|
||||||
"image-webpack-loader?bypassOnDebug&optipng.optimizationLevel=7&gifsicle.interlaced=false",
|
|
||||||
],
|
|
||||||
},
|
|
||||||
{
|
|
||||||
test: /\.(woff|woff2|ttf)$/,
|
|
||||||
use: {
|
|
||||||
loader: "url-loader",
|
|
||||||
},
|
|
||||||
},
|
|
||||||
],
|
|
||||||
},
|
|
||||||
plugins: [
|
|
||||||
new CopyPlugin({
|
|
||||||
patterns: [
|
|
||||||
{
|
|
||||||
from: "node_modules/onnxruntime-web/dist/*.wasm",
|
|
||||||
to: "[name][ext]",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
from: "model",
|
|
||||||
to: "model",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
from: "src/assets",
|
|
||||||
to: "assets",
|
|
||||||
},
|
|
||||||
],
|
|
||||||
}),
|
|
||||||
new HtmlWebpackPlugin({
|
|
||||||
template: "./src/assets/index.html",
|
|
||||||
}),
|
|
||||||
new FriendlyErrorsWebpackPlugin(),
|
|
||||||
new webpack.ProvidePlugin({
|
|
||||||
process: "process/browser",
|
|
||||||
}),
|
|
||||||
],
|
|
||||||
};
|
|
@ -1,25 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
// development config
|
|
||||||
const { merge } = require("webpack-merge");
|
|
||||||
const commonConfig = require("./common");
|
|
||||||
|
|
||||||
module.exports = merge(commonConfig, {
|
|
||||||
mode: "development",
|
|
||||||
devServer: {
|
|
||||||
hot: true, // enable HMR on the server
|
|
||||||
open: true,
|
|
||||||
// These headers enable the cross origin isolation state
|
|
||||||
// needed to enable use of SharedArrayBuffer for ONNX
|
|
||||||
// multithreading.
|
|
||||||
headers: {
|
|
||||||
"Cross-Origin-Opener-Policy": "same-origin",
|
|
||||||
"Cross-Origin-Embedder-Policy": "credentialless",
|
|
||||||
},
|
|
||||||
},
|
|
||||||
devtool: "cheap-module-source-map",
|
|
||||||
});
|
|
@ -1,22 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
// production config
|
|
||||||
const { merge } = require("webpack-merge");
|
|
||||||
const { resolve } = require("path");
|
|
||||||
const Dotenv = require("dotenv-webpack");
|
|
||||||
const commonConfig = require("./common");
|
|
||||||
|
|
||||||
module.exports = merge(commonConfig, {
|
|
||||||
mode: "production",
|
|
||||||
output: {
|
|
||||||
filename: "js/bundle.[contenthash].min.js",
|
|
||||||
path: resolve(__dirname, "../../dist"),
|
|
||||||
publicPath: "/",
|
|
||||||
},
|
|
||||||
devtool: "source-map",
|
|
||||||
plugins: [new Dotenv()],
|
|
||||||
});
|
|
@ -1,62 +0,0 @@
|
|||||||
{
|
|
||||||
"name": "segment-anything-mini-demo",
|
|
||||||
"version": "0.1.0",
|
|
||||||
"license": "MIT",
|
|
||||||
"scripts": {
|
|
||||||
"build": "yarn run clean-dist && webpack --config=configs/webpack/prod.js && mv dist/*.wasm dist/js",
|
|
||||||
"clean-dist": "rimraf dist/*",
|
|
||||||
"lint": "eslint './src/**/*.{js,ts,tsx}' --quiet",
|
|
||||||
"start": "yarn run start-dev",
|
|
||||||
"test": "yarn run start-model-test",
|
|
||||||
"start-dev": "webpack serve --config=configs/webpack/dev.js"
|
|
||||||
},
|
|
||||||
"devDependencies": {
|
|
||||||
"@babel/core": "^7.18.13",
|
|
||||||
"@babel/preset-env": "^7.18.10",
|
|
||||||
"@babel/preset-react": "^7.18.6",
|
|
||||||
"@babel/preset-typescript": "^7.18.6",
|
|
||||||
"@pmmmwh/react-refresh-webpack-plugin": "^0.5.7",
|
|
||||||
"@testing-library/react": "^13.3.0",
|
|
||||||
"@types/node": "^18.7.13",
|
|
||||||
"@types/react": "^18.0.17",
|
|
||||||
"@types/react-dom": "^18.0.6",
|
|
||||||
"@types/underscore": "^1.11.4",
|
|
||||||
"@typescript-eslint/eslint-plugin": "^5.35.1",
|
|
||||||
"@typescript-eslint/parser": "^5.35.1",
|
|
||||||
"babel-loader": "^8.2.5",
|
|
||||||
"copy-webpack-plugin": "^11.0.0",
|
|
||||||
"css-loader": "^6.7.1",
|
|
||||||
"dotenv": "^16.0.2",
|
|
||||||
"dotenv-webpack": "^8.0.1",
|
|
||||||
"eslint": "^8.22.0",
|
|
||||||
"eslint-plugin-react": "^7.31.0",
|
|
||||||
"file-loader": "^6.2.0",
|
|
||||||
"fork-ts-checker-webpack-plugin": "^7.2.13",
|
|
||||||
"friendly-errors-webpack-plugin": "^1.7.0",
|
|
||||||
"html-webpack-plugin": "^5.5.0",
|
|
||||||
"image-webpack-loader": "^8.1.0",
|
|
||||||
"postcss-loader": "^7.0.1",
|
|
||||||
"postcss-preset-env": "^7.8.0",
|
|
||||||
"process": "^0.11.10",
|
|
||||||
"rimraf": "^3.0.2",
|
|
||||||
"sass": "^1.54.5",
|
|
||||||
"sass-loader": "^13.0.2",
|
|
||||||
"style-loader": "^3.3.1",
|
|
||||||
"tailwindcss": "^3.1.8",
|
|
||||||
"ts-loader": "^9.3.1",
|
|
||||||
"typescript": "^4.8.2",
|
|
||||||
"webpack": "^5.74.0",
|
|
||||||
"webpack-cli": "^4.10.0",
|
|
||||||
"webpack-dev-server": "^4.10.0",
|
|
||||||
"webpack-dotenv-plugin": "^2.1.0",
|
|
||||||
"webpack-merge": "^5.8.0"
|
|
||||||
},
|
|
||||||
"dependencies": {
|
|
||||||
"npyjs": "^0.4.0",
|
|
||||||
"onnxruntime-web": "^1.14.0",
|
|
||||||
"react": "^18.2.0",
|
|
||||||
"react-dom": "^18.2.0",
|
|
||||||
"underscore": "^1.13.6",
|
|
||||||
"react-refresh": "^0.14.0"
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,10 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
const tailwindcss = require("tailwindcss");
|
|
||||||
module.exports = {
|
|
||||||
plugins: ["postcss-preset-env", 'tailwindcss/nesting', tailwindcss],
|
|
||||||
};
|
|
@ -1,130 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import { InferenceSession, Tensor } from "onnxruntime-web";
|
|
||||||
import React, { useContext, useEffect, useState } from "react";
|
|
||||||
import "./assets/scss/App.scss";
|
|
||||||
import { handleImageScale } from "./components/helpers/scaleHelper";
|
|
||||||
import { modelScaleProps } from "./components/helpers/Interfaces";
|
|
||||||
import { onnxMaskToImage } from "./components/helpers/maskUtils";
|
|
||||||
import { modelData } from "./components/helpers/onnxModelAPI";
|
|
||||||
import Stage from "./components/Stage";
|
|
||||||
import AppContext from "./components/hooks/createContext";
|
|
||||||
const ort = require("onnxruntime-web");
|
|
||||||
/* @ts-ignore */
|
|
||||||
import npyjs from "npyjs";
|
|
||||||
|
|
||||||
// Define image, embedding and model paths
|
|
||||||
const IMAGE_PATH = "/assets/data/dogs.jpg";
|
|
||||||
const IMAGE_EMBEDDING = "/assets/data/dogs_embedding.npy";
|
|
||||||
const MODEL_DIR = "/model/sam_onnx_quantized_example.onnx";
|
|
||||||
|
|
||||||
const App = () => {
|
|
||||||
const {
|
|
||||||
clicks: [clicks],
|
|
||||||
image: [, setImage],
|
|
||||||
maskImg: [, setMaskImg],
|
|
||||||
} = useContext(AppContext)!;
|
|
||||||
const [model, setModel] = useState<InferenceSession | null>(null); // ONNX model
|
|
||||||
const [tensor, setTensor] = useState<Tensor | null>(null); // Image embedding tensor
|
|
||||||
|
|
||||||
// The ONNX model expects the input to be rescaled to 1024.
|
|
||||||
// The modelScale state variable keeps track of the scale values.
|
|
||||||
const [modelScale, setModelScale] = useState<modelScaleProps | null>(null);
|
|
||||||
|
|
||||||
// Initialize the ONNX model. load the image, and load the SAM
|
|
||||||
// pre-computed image embedding
|
|
||||||
useEffect(() => {
|
|
||||||
// Initialize the ONNX model
|
|
||||||
const initModel = async () => {
|
|
||||||
try {
|
|
||||||
if (MODEL_DIR === undefined) return;
|
|
||||||
const URL: string = MODEL_DIR;
|
|
||||||
const model = await InferenceSession.create(URL);
|
|
||||||
setModel(model);
|
|
||||||
} catch (e) {
|
|
||||||
console.log(e);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
initModel();
|
|
||||||
|
|
||||||
// Load the image
|
|
||||||
const url = new URL(IMAGE_PATH, location.origin);
|
|
||||||
loadImage(url);
|
|
||||||
|
|
||||||
// Load the Segment Anything pre-computed embedding
|
|
||||||
Promise.resolve(loadNpyTensor(IMAGE_EMBEDDING, "float32")).then(
|
|
||||||
(embedding) => setTensor(embedding)
|
|
||||||
);
|
|
||||||
}, []);
|
|
||||||
|
|
||||||
const loadImage = async (url: URL) => {
|
|
||||||
try {
|
|
||||||
const img = new Image();
|
|
||||||
img.src = url.href;
|
|
||||||
img.onload = () => {
|
|
||||||
const { height, width, samScale } = handleImageScale(img);
|
|
||||||
setModelScale({
|
|
||||||
height: height, // original image height
|
|
||||||
width: width, // original image width
|
|
||||||
samScale: samScale, // scaling factor for image which has been resized to longest side 1024
|
|
||||||
});
|
|
||||||
img.width = width;
|
|
||||||
img.height = height;
|
|
||||||
setImage(img);
|
|
||||||
};
|
|
||||||
} catch (error) {
|
|
||||||
console.log(error);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// Decode a Numpy file into a tensor.
|
|
||||||
const loadNpyTensor = async (tensorFile: string, dType: string) => {
|
|
||||||
let npLoader = new npyjs();
|
|
||||||
const npArray = await npLoader.load(tensorFile);
|
|
||||||
const tensor = new ort.Tensor(dType, npArray.data, npArray.shape);
|
|
||||||
return tensor;
|
|
||||||
};
|
|
||||||
|
|
||||||
// Run the ONNX model every time clicks has changed
|
|
||||||
useEffect(() => {
|
|
||||||
runONNX();
|
|
||||||
}, [clicks]);
|
|
||||||
|
|
||||||
const runONNX = async () => {
|
|
||||||
try {
|
|
||||||
if (
|
|
||||||
model === null ||
|
|
||||||
clicks === null ||
|
|
||||||
tensor === null ||
|
|
||||||
modelScale === null
|
|
||||||
)
|
|
||||||
return;
|
|
||||||
else {
|
|
||||||
// Preapre the model input in the correct format for SAM.
|
|
||||||
// The modelData function is from onnxModelAPI.tsx.
|
|
||||||
const feeds = modelData({
|
|
||||||
clicks,
|
|
||||||
tensor,
|
|
||||||
modelScale,
|
|
||||||
});
|
|
||||||
if (feeds === undefined) return;
|
|
||||||
// Run the SAM ONNX model with the feeds returned from modelData()
|
|
||||||
const results = await model.run(feeds);
|
|
||||||
const output = results[model.outputNames[0]];
|
|
||||||
// The predicted mask returned from the ONNX model is an array which is
|
|
||||||
// rendered as an HTML image using onnxMaskToImage() from maskUtils.tsx.
|
|
||||||
setMaskImg(onnxMaskToImage(output.data, output.dims[2], output.dims[3]));
|
|
||||||
}
|
|
||||||
} catch (e) {
|
|
||||||
console.log(e);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
return <Stage />;
|
|
||||||
};
|
|
||||||
|
|
||||||
export default App;
|
|
Before Width: | Height: | Size: 438 KiB |
@ -1,18 +0,0 @@
|
|||||||
<!DOCTYPE html>
|
|
||||||
<html lang="en" dir="ltr" prefix="og: https://ogp.me/ns#" class="w-full h-full">
|
|
||||||
<head>
|
|
||||||
<meta charset="utf-8" />
|
|
||||||
<meta
|
|
||||||
name="viewport"
|
|
||||||
content="width=device-width, initial-scale=1, shrink-to-fit=no"
|
|
||||||
/>
|
|
||||||
<title>Segment Anything Demo</title>
|
|
||||||
|
|
||||||
<!-- Meta Tags -->
|
|
||||||
<meta property="og:type" content="website" />
|
|
||||||
<meta property="og:title" content="Segment Anything Demo" />
|
|
||||||
</head>
|
|
||||||
<body class="w-full h-full">
|
|
||||||
<div id="root" class="w-full h-full"></div>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
@ -1,3 +0,0 @@
|
|||||||
@tailwind base;
|
|
||||||
@tailwind components;
|
|
||||||
@tailwind utilities;
|
|
@ -1,49 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import React, { useContext } from "react";
|
|
||||||
import * as _ from "underscore";
|
|
||||||
import Tool from "./Tool";
|
|
||||||
import { modelInputProps } from "./helpers/Interfaces";
|
|
||||||
import AppContext from "./hooks/createContext";
|
|
||||||
|
|
||||||
const Stage = () => {
|
|
||||||
const {
|
|
||||||
clicks: [, setClicks],
|
|
||||||
image: [image],
|
|
||||||
} = useContext(AppContext)!;
|
|
||||||
|
|
||||||
const getClick = (x: number, y: number): modelInputProps => {
|
|
||||||
const clickType = 1;
|
|
||||||
return { x, y, clickType };
|
|
||||||
};
|
|
||||||
|
|
||||||
// Get mouse position and scale the (x, y) coordinates back to the natural
|
|
||||||
// scale of the image. Update the state of clicks with setClicks to trigger
|
|
||||||
// the ONNX model to run and generate a new mask via a useEffect in App.tsx
|
|
||||||
const handleMouseMove = _.throttle((e: any) => {
|
|
||||||
let el = e.nativeEvent.target;
|
|
||||||
const rect = el.getBoundingClientRect();
|
|
||||||
let x = e.clientX - rect.left;
|
|
||||||
let y = e.clientY - rect.top;
|
|
||||||
const imageScale = image ? image.width / el.offsetWidth : 1;
|
|
||||||
x *= imageScale;
|
|
||||||
y *= imageScale;
|
|
||||||
const click = getClick(x, y);
|
|
||||||
if (click) setClicks([click]);
|
|
||||||
}, 15);
|
|
||||||
|
|
||||||
const flexCenterClasses = "flex items-center justify-center";
|
|
||||||
return (
|
|
||||||
<div className={`${flexCenterClasses} w-full h-full`}>
|
|
||||||
<div className={`${flexCenterClasses} relative w-[90%] h-[90%]`}>
|
|
||||||
<Tool handleMouseMove={handleMouseMove} />
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
);
|
|
||||||
};
|
|
||||||
|
|
||||||
export default Stage;
|
|
@ -1,73 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import React, { useContext, useEffect, useState } from "react";
|
|
||||||
import AppContext from "./hooks/createContext";
|
|
||||||
import { ToolProps } from "./helpers/Interfaces";
|
|
||||||
import * as _ from "underscore";
|
|
||||||
|
|
||||||
const Tool = ({ handleMouseMove }: ToolProps) => {
|
|
||||||
const {
|
|
||||||
image: [image],
|
|
||||||
maskImg: [maskImg, setMaskImg],
|
|
||||||
} = useContext(AppContext)!;
|
|
||||||
|
|
||||||
// Determine if we should shrink or grow the images to match the
|
|
||||||
// width or the height of the page and setup a ResizeObserver to
|
|
||||||
// monitor changes in the size of the page
|
|
||||||
const [shouldFitToWidth, setShouldFitToWidth] = useState(true);
|
|
||||||
const bodyEl = document.body;
|
|
||||||
const fitToPage = () => {
|
|
||||||
if (!image) return;
|
|
||||||
const imageAspectRatio = image.width / image.height;
|
|
||||||
const screenAspectRatio = window.innerWidth / window.innerHeight;
|
|
||||||
setShouldFitToWidth(imageAspectRatio > screenAspectRatio);
|
|
||||||
};
|
|
||||||
const resizeObserver = new ResizeObserver((entries) => {
|
|
||||||
for (const entry of entries) {
|
|
||||||
if (entry.target === bodyEl) {
|
|
||||||
fitToPage();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
});
|
|
||||||
useEffect(() => {
|
|
||||||
fitToPage();
|
|
||||||
resizeObserver.observe(bodyEl);
|
|
||||||
return () => {
|
|
||||||
resizeObserver.unobserve(bodyEl);
|
|
||||||
};
|
|
||||||
}, [image]);
|
|
||||||
|
|
||||||
const imageClasses = "";
|
|
||||||
const maskImageClasses = `absolute opacity-40 pointer-events-none`;
|
|
||||||
|
|
||||||
// Render the image and the predicted mask image on top
|
|
||||||
return (
|
|
||||||
<>
|
|
||||||
{image && (
|
|
||||||
<img
|
|
||||||
onMouseMove={handleMouseMove}
|
|
||||||
onMouseOut={() => _.defer(() => setMaskImg(null))}
|
|
||||||
onTouchStart={handleMouseMove}
|
|
||||||
src={image.src}
|
|
||||||
className={`${
|
|
||||||
shouldFitToWidth ? "w-full" : "h-full"
|
|
||||||
} ${imageClasses}`}
|
|
||||||
></img>
|
|
||||||
)}
|
|
||||||
{maskImg && (
|
|
||||||
<img
|
|
||||||
src={maskImg.src}
|
|
||||||
className={`${
|
|
||||||
shouldFitToWidth ? "w-full" : "h-full"
|
|
||||||
} ${maskImageClasses}`}
|
|
||||||
></img>
|
|
||||||
)}
|
|
||||||
</>
|
|
||||||
);
|
|
||||||
};
|
|
||||||
|
|
||||||
export default Tool;
|
|
@ -1,29 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import { Tensor } from "onnxruntime-web";
|
|
||||||
|
|
||||||
export interface modelScaleProps {
|
|
||||||
samScale: number;
|
|
||||||
height: number;
|
|
||||||
width: number;
|
|
||||||
}
|
|
||||||
|
|
||||||
export interface modelInputProps {
|
|
||||||
x: number;
|
|
||||||
y: number;
|
|
||||||
clickType: number;
|
|
||||||
}
|
|
||||||
|
|
||||||
export interface modeDataProps {
|
|
||||||
clicks?: Array<modelInputProps>;
|
|
||||||
tensor: Tensor;
|
|
||||||
modelScale: modelScaleProps;
|
|
||||||
}
|
|
||||||
|
|
||||||
export interface ToolProps {
|
|
||||||
handleMouseMove: (e: any) => void;
|
|
||||||
}
|
|
@ -1,47 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
// Convert the onnx model mask prediction to ImageData
|
|
||||||
function arrayToImageData(input: any, width: number, height: number) {
|
|
||||||
const [r, g, b, a] = [0, 114, 189, 255]; // the masks's blue color
|
|
||||||
const arr = new Uint8ClampedArray(4 * width * height).fill(0);
|
|
||||||
for (let i = 0; i < input.length; i++) {
|
|
||||||
|
|
||||||
// Threshold the onnx model mask prediction at 0.0
|
|
||||||
// This is equivalent to thresholding the mask using predictor.model.mask_threshold
|
|
||||||
// in python
|
|
||||||
if (input[i] > 0.0) {
|
|
||||||
arr[4 * i + 0] = r;
|
|
||||||
arr[4 * i + 1] = g;
|
|
||||||
arr[4 * i + 2] = b;
|
|
||||||
arr[4 * i + 3] = a;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return new ImageData(arr, height, width);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Use a Canvas element to produce an image from ImageData
|
|
||||||
function imageDataToImage(imageData: ImageData) {
|
|
||||||
const canvas = imageDataToCanvas(imageData);
|
|
||||||
const image = new Image();
|
|
||||||
image.src = canvas.toDataURL();
|
|
||||||
return image;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Canvas elements can be created from ImageData
|
|
||||||
function imageDataToCanvas(imageData: ImageData) {
|
|
||||||
const canvas = document.createElement("canvas");
|
|
||||||
const ctx = canvas.getContext("2d");
|
|
||||||
canvas.width = imageData.width;
|
|
||||||
canvas.height = imageData.height;
|
|
||||||
ctx?.putImageData(imageData, 0, 0);
|
|
||||||
return canvas;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Convert the onnx model mask output to an HTMLImageElement
|
|
||||||
export function onnxMaskToImage(input: any, width: number, height: number) {
|
|
||||||
return imageDataToImage(arrayToImageData(input, width, height));
|
|
||||||
}
|
|
@ -1,71 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import { Tensor } from "onnxruntime-web";
|
|
||||||
import { modeDataProps } from "./Interfaces";
|
|
||||||
|
|
||||||
const modelData = ({ clicks, tensor, modelScale }: modeDataProps) => {
|
|
||||||
const imageEmbedding = tensor;
|
|
||||||
let pointCoords;
|
|
||||||
let pointLabels;
|
|
||||||
let pointCoordsTensor;
|
|
||||||
let pointLabelsTensor;
|
|
||||||
|
|
||||||
// Check there are input click prompts
|
|
||||||
if (clicks) {
|
|
||||||
let n = clicks.length;
|
|
||||||
|
|
||||||
// If there is no box input, a single padding point with
|
|
||||||
// label -1 and coordinates (0.0, 0.0) should be concatenated
|
|
||||||
// so initialize the array to support (n + 1) points.
|
|
||||||
pointCoords = new Float32Array(2 * (n + 1));
|
|
||||||
pointLabels = new Float32Array(n + 1);
|
|
||||||
|
|
||||||
// Add clicks and scale to what SAM expects
|
|
||||||
for (let i = 0; i < n; i++) {
|
|
||||||
pointCoords[2 * i] = clicks[i].x * modelScale.samScale;
|
|
||||||
pointCoords[2 * i + 1] = clicks[i].y * modelScale.samScale;
|
|
||||||
pointLabels[i] = clicks[i].clickType;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Add in the extra point/label when only clicks and no box
|
|
||||||
// The extra point is at (0, 0) with label -1
|
|
||||||
pointCoords[2 * n] = 0.0;
|
|
||||||
pointCoords[2 * n + 1] = 0.0;
|
|
||||||
pointLabels[n] = -1.0;
|
|
||||||
|
|
||||||
// Create the tensor
|
|
||||||
pointCoordsTensor = new Tensor("float32", pointCoords, [1, n + 1, 2]);
|
|
||||||
pointLabelsTensor = new Tensor("float32", pointLabels, [1, n + 1]);
|
|
||||||
}
|
|
||||||
const imageSizeTensor = new Tensor("float32", [
|
|
||||||
modelScale.height,
|
|
||||||
modelScale.width,
|
|
||||||
]);
|
|
||||||
|
|
||||||
if (pointCoordsTensor === undefined || pointLabelsTensor === undefined)
|
|
||||||
return;
|
|
||||||
|
|
||||||
// There is no previous mask, so default to an empty tensor
|
|
||||||
const maskInput = new Tensor(
|
|
||||||
"float32",
|
|
||||||
new Float32Array(256 * 256),
|
|
||||||
[1, 1, 256, 256]
|
|
||||||
);
|
|
||||||
// There is no previous mask, so default to 0
|
|
||||||
const hasMaskInput = new Tensor("float32", [0]);
|
|
||||||
|
|
||||||
return {
|
|
||||||
image_embeddings: imageEmbedding,
|
|
||||||
point_coords: pointCoordsTensor,
|
|
||||||
point_labels: pointLabelsTensor,
|
|
||||||
orig_im_size: imageSizeTensor,
|
|
||||||
mask_input: maskInput,
|
|
||||||
has_mask_input: hasMaskInput,
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
export { modelData };
|
|
@ -1,18 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
|
|
||||||
// Helper function for handling image scaling needed for SAM
|
|
||||||
const handleImageScale = (image: HTMLImageElement) => {
|
|
||||||
// Input images to SAM must be resized so the longest side is 1024
|
|
||||||
const LONG_SIDE_LENGTH = 1024;
|
|
||||||
let w = image.naturalWidth;
|
|
||||||
let h = image.naturalHeight;
|
|
||||||
const samScale = LONG_SIDE_LENGTH / Math.max(h, w);
|
|
||||||
return { height: h, width: w, samScale };
|
|
||||||
};
|
|
||||||
|
|
||||||
export { handleImageScale };
|
|
@ -1,31 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import React, { useState } from "react";
|
|
||||||
import { modelInputProps } from "../helpers/Interfaces";
|
|
||||||
import AppContext from "./createContext";
|
|
||||||
|
|
||||||
const AppContextProvider = (props: {
|
|
||||||
children: React.ReactElement<any, string | React.JSXElementConstructor<any>>;
|
|
||||||
}) => {
|
|
||||||
const [clicks, setClicks] = useState<Array<modelInputProps> | null>(null);
|
|
||||||
const [image, setImage] = useState<HTMLImageElement | null>(null);
|
|
||||||
const [maskImg, setMaskImg] = useState<HTMLImageElement | null>(null);
|
|
||||||
|
|
||||||
return (
|
|
||||||
<AppContext.Provider
|
|
||||||
value={{
|
|
||||||
clicks: [clicks, setClicks],
|
|
||||||
image: [image, setImage],
|
|
||||||
maskImg: [maskImg, setMaskImg],
|
|
||||||
}}
|
|
||||||
>
|
|
||||||
{props.children}
|
|
||||||
</AppContext.Provider>
|
|
||||||
);
|
|
||||||
};
|
|
||||||
|
|
||||||
export default AppContextProvider;
|
|
@ -1,27 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import { createContext } from "react";
|
|
||||||
import { modelInputProps } from "../helpers/Interfaces";
|
|
||||||
|
|
||||||
interface contextProps {
|
|
||||||
clicks: [
|
|
||||||
clicks: modelInputProps[] | null,
|
|
||||||
setClicks: (e: modelInputProps[] | null) => void
|
|
||||||
];
|
|
||||||
image: [
|
|
||||||
image: HTMLImageElement | null,
|
|
||||||
setImage: (e: HTMLImageElement | null) => void
|
|
||||||
];
|
|
||||||
maskImg: [
|
|
||||||
maskImg: HTMLImageElement | null,
|
|
||||||
setMaskImg: (e: HTMLImageElement | null) => void
|
|
||||||
];
|
|
||||||
}
|
|
||||||
|
|
||||||
const AppContext = createContext<contextProps | null>(null);
|
|
||||||
|
|
||||||
export default AppContext;
|
|
@ -1,17 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import * as React from "react";
|
|
||||||
import { createRoot } from "react-dom/client";
|
|
||||||
import AppContextProvider from "./components/hooks/context";
|
|
||||||
import App from "./App";
|
|
||||||
const container = document.getElementById("root");
|
|
||||||
const root = createRoot(container!);
|
|
||||||
root.render(
|
|
||||||
<AppContextProvider>
|
|
||||||
<App/>
|
|
||||||
</AppContextProvider>
|
|
||||||
);
|
|
@ -1,12 +0,0 @@
|
|||||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
// All rights reserved.
|
|
||||||
|
|
||||||
// This source code is licensed under the license found in the
|
|
||||||
// LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
/** @type {import('tailwindcss').Config} */
|
|
||||||
module.exports = {
|
|
||||||
content: ["./src/**/*.{html,js,tsx}"],
|
|
||||||
theme: {},
|
|
||||||
plugins: [],
|
|
||||||
};
|
|
@ -1,24 +0,0 @@
|
|||||||
{
|
|
||||||
"compilerOptions": {
|
|
||||||
"lib": ["dom", "dom.iterable", "esnext"],
|
|
||||||
"allowJs": true,
|
|
||||||
"skipLibCheck": true,
|
|
||||||
"strict": true,
|
|
||||||
"forceConsistentCasingInFileNames": true,
|
|
||||||
"noEmit": false,
|
|
||||||
"esModuleInterop": true,
|
|
||||||
"module": "esnext",
|
|
||||||
"moduleResolution": "node",
|
|
||||||
"resolveJsonModule": true,
|
|
||||||
"isolatedModules": true,
|
|
||||||
"jsx": "react",
|
|
||||||
"incremental": true,
|
|
||||||
"target": "ESNext",
|
|
||||||
"useDefineForClassFields": true,
|
|
||||||
"allowSyntheticDefaultImports": true,
|
|
||||||
"outDir": "./dist/",
|
|
||||||
"sourceMap": true
|
|
||||||
},
|
|
||||||
"include": ["next-env.d.ts", "**/*.ts", "**/*.tsx", "src"],
|
|
||||||
"exclude": ["node_modules"]
|
|
||||||
}
|
|
@ -1,32 +0,0 @@
|
|||||||
#!/bin/bash -e
|
|
||||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
||||||
|
|
||||||
{
|
|
||||||
black --version | grep -E "23\." > /dev/null
|
|
||||||
} || {
|
|
||||||
echo "Linter requires 'black==23.*' !"
|
|
||||||
exit 1
|
|
||||||
}
|
|
||||||
|
|
||||||
ISORT_VERSION=$(isort --version-number)
|
|
||||||
if [[ "$ISORT_VERSION" != 5.12* ]]; then
|
|
||||||
echo "Linter requires isort==5.12.0 !"
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
echo "Running isort ..."
|
|
||||||
isort . --atomic
|
|
||||||
|
|
||||||
echo "Running black ..."
|
|
||||||
black -l 100 .
|
|
||||||
|
|
||||||
echo "Running flake8 ..."
|
|
||||||
if [ -x "$(command -v flake8)" ]; then
|
|
||||||
flake8 .
|
|
||||||
else
|
|
||||||
python3 -m flake8 .
|
|
||||||
fi
|
|
||||||
|
|
||||||
echo "Running mypy..."
|
|
||||||
|
|
||||||
mypy --exclude 'setup.py|notebooks' .
|
|
Before Width: | Height: | Size: 98 KiB |
Before Width: | Height: | Size: 164 KiB |
Before Width: | Height: | Size: 265 KiB |
@ -1,774 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "901c8ef3",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Copyright (c) Meta Platforms, Inc. and affiliates."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "1662bb7c",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"# Produces masks from prompts using an ONNX model"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "7fcc21a0",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"SAM's prompt encoder and mask decoder are very lightweight, which allows for efficient computation of a mask given user input. This notebook shows an example of how to export and use this lightweight component of the model in ONNX format, allowing it to run on a variety of platforms that support an ONNX runtime."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 4,
|
|
||||||
"id": "86daff77",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/html": [
|
|
||||||
"\n",
|
|
||||||
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb\">\n",
|
|
||||||
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
|
|
||||||
"</a>\n"
|
|
||||||
],
|
|
||||||
"text/plain": [
|
|
||||||
"<IPython.core.display.HTML object>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"from IPython.display import display, HTML\n",
|
|
||||||
"display(HTML(\n",
|
|
||||||
"\"\"\"\n",
|
|
||||||
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb\">\n",
|
|
||||||
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
|
|
||||||
"</a>\n",
|
|
||||||
"\"\"\"\n",
|
|
||||||
"))"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "55ae4e00",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Environment Set-up"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "109a5cc2",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"If running locally using jupyter, first install `segment_anything` in your environment using the [installation instructions](https://github.com/facebookresearch/segment-anything#installation) in the repository. The latest stable versions of PyTorch and ONNX are recommended for this notebook. If running from Google Colab, set `using_colab=True` below and run the cell. In Colab, be sure to select 'GPU' under 'Edit'->'Notebook Settings'->'Hardware accelerator'."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 5,
|
|
||||||
"id": "39b99fc4",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"using_colab = False"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 6,
|
|
||||||
"id": "296a69be",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"if using_colab:\n",
|
|
||||||
" import torch\n",
|
|
||||||
" import torchvision\n",
|
|
||||||
" print(\"PyTorch version:\", torch.__version__)\n",
|
|
||||||
" print(\"Torchvision version:\", torchvision.__version__)\n",
|
|
||||||
" print(\"CUDA is available:\", torch.cuda.is_available())\n",
|
|
||||||
" import sys\n",
|
|
||||||
" !{sys.executable} -m pip install opencv-python matplotlib onnx onnxruntime\n",
|
|
||||||
" !{sys.executable} -m pip install 'git+https://github.com/facebookresearch/segment-anything.git'\n",
|
|
||||||
" \n",
|
|
||||||
" !mkdir images\n",
|
|
||||||
" !wget -P images https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/truck.jpg\n",
|
|
||||||
" \n",
|
|
||||||
" !wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "dc4a58be",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Set-up"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "42396e8d",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Note that this notebook requires both the `onnx` and `onnxruntime` optional dependencies, in addition to `opencv-python` and `matplotlib` for visualization."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "2c712610",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import torch\n",
|
|
||||||
"import numpy as np\n",
|
|
||||||
"import cv2\n",
|
|
||||||
"import matplotlib.pyplot as plt\n",
|
|
||||||
"from segment_anything import sam_model_registry, SamPredictor\n",
|
|
||||||
"from segment_anything.utils.onnx import SamOnnxModel\n",
|
|
||||||
"\n",
|
|
||||||
"import onnxruntime\n",
|
|
||||||
"from onnxruntime.quantization import QuantType\n",
|
|
||||||
"from onnxruntime.quantization.quantize import quantize_dynamic"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "f29441b9",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def show_mask(mask, ax):\n",
|
|
||||||
" color = np.array([30/255, 144/255, 255/255, 0.6])\n",
|
|
||||||
" h, w = mask.shape[-2:]\n",
|
|
||||||
" mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)\n",
|
|
||||||
" ax.imshow(mask_image)\n",
|
|
||||||
" \n",
|
|
||||||
"def show_points(coords, labels, ax, marker_size=375):\n",
|
|
||||||
" pos_points = coords[labels==1]\n",
|
|
||||||
" neg_points = coords[labels==0]\n",
|
|
||||||
" ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)\n",
|
|
||||||
" ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) \n",
|
|
||||||
" \n",
|
|
||||||
"def show_box(box, ax):\n",
|
|
||||||
" x0, y0 = box[0], box[1]\n",
|
|
||||||
" w, h = box[2] - box[0], box[3] - box[1]\n",
|
|
||||||
" ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "bd0f6b2b",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Export an ONNX model"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "1540f719",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Set the path below to a SAM model checkpoint, then load the model. This will be needed to both export the model and to calculate embeddings for the model."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "76fc53f4",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"checkpoint = \"sam_vit_h_4b8939.pth\"\n",
|
|
||||||
"model_type = \"vit_h\""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "11bfc8aa",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"sam = sam_model_registry[model_type](checkpoint=checkpoint)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "450c089c",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"The script `segment-anything/scripts/export_onnx_model.py` can be used to export the necessary portion of SAM. Alternatively, run the following code to export an ONNX model. If you have already exported a model, set the path below and skip to the next section. Assure that the exported ONNX model aligns with the checkpoint and model type set above. This notebook expects the model was exported with the parameter `return_single_mask=True`."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "38a8add8",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"onnx_model_path = None # Set to use an already exported model, then skip to the next section."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "7da638ba",
|
|
||||||
"metadata": {
|
|
||||||
"scrolled": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import warnings\n",
|
|
||||||
"\n",
|
|
||||||
"onnx_model_path = \"sam_onnx_example.onnx\"\n",
|
|
||||||
"\n",
|
|
||||||
"onnx_model = SamOnnxModel(sam, return_single_mask=True)\n",
|
|
||||||
"\n",
|
|
||||||
"dynamic_axes = {\n",
|
|
||||||
" \"point_coords\": {1: \"num_points\"},\n",
|
|
||||||
" \"point_labels\": {1: \"num_points\"},\n",
|
|
||||||
"}\n",
|
|
||||||
"\n",
|
|
||||||
"embed_dim = sam.prompt_encoder.embed_dim\n",
|
|
||||||
"embed_size = sam.prompt_encoder.image_embedding_size\n",
|
|
||||||
"mask_input_size = [4 * x for x in embed_size]\n",
|
|
||||||
"dummy_inputs = {\n",
|
|
||||||
" \"image_embeddings\": torch.randn(1, embed_dim, *embed_size, dtype=torch.float),\n",
|
|
||||||
" \"point_coords\": torch.randint(low=0, high=1024, size=(1, 5, 2), dtype=torch.float),\n",
|
|
||||||
" \"point_labels\": torch.randint(low=0, high=4, size=(1, 5), dtype=torch.float),\n",
|
|
||||||
" \"mask_input\": torch.randn(1, 1, *mask_input_size, dtype=torch.float),\n",
|
|
||||||
" \"has_mask_input\": torch.tensor([1], dtype=torch.float),\n",
|
|
||||||
" \"orig_im_size\": torch.tensor([1500, 2250], dtype=torch.float),\n",
|
|
||||||
"}\n",
|
|
||||||
"output_names = [\"masks\", \"iou_predictions\", \"low_res_masks\"]\n",
|
|
||||||
"\n",
|
|
||||||
"with warnings.catch_warnings():\n",
|
|
||||||
" warnings.filterwarnings(\"ignore\", category=torch.jit.TracerWarning)\n",
|
|
||||||
" warnings.filterwarnings(\"ignore\", category=UserWarning)\n",
|
|
||||||
" with open(onnx_model_path, \"wb\") as f:\n",
|
|
||||||
" torch.onnx.export(\n",
|
|
||||||
" onnx_model,\n",
|
|
||||||
" tuple(dummy_inputs.values()),\n",
|
|
||||||
" f,\n",
|
|
||||||
" export_params=True,\n",
|
|
||||||
" verbose=False,\n",
|
|
||||||
" opset_version=17,\n",
|
|
||||||
" do_constant_folding=True,\n",
|
|
||||||
" input_names=list(dummy_inputs.keys()),\n",
|
|
||||||
" output_names=output_names,\n",
|
|
||||||
" dynamic_axes=dynamic_axes,\n",
|
|
||||||
" ) "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "c450cf1a",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"If desired, the model can additionally be quantized and optimized. We find this improves web runtime significantly for negligible change in qualitative performance. Run the next cell to quantize the model, or skip to the next section otherwise."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "235d39fe",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"onnx_model_quantized_path = \"sam_onnx_quantized_example.onnx\"\n",
|
|
||||||
"quantize_dynamic(\n",
|
|
||||||
" model_input=onnx_model_path,\n",
|
|
||||||
" model_output=onnx_model_quantized_path,\n",
|
|
||||||
" optimize_model=True,\n",
|
|
||||||
" per_channel=False,\n",
|
|
||||||
" reduce_range=False,\n",
|
|
||||||
" weight_type=QuantType.QUInt8,\n",
|
|
||||||
")\n",
|
|
||||||
"onnx_model_path = onnx_model_quantized_path"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "927a928b",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Example Image"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "6be6eb55",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"image = cv2.imread('images/truck.jpg')\n",
|
|
||||||
"image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "b7e9a27a",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"plt.figure(figsize=(10,10))\n",
|
|
||||||
"plt.imshow(image)\n",
|
|
||||||
"plt.axis('on')\n",
|
|
||||||
"plt.show()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "027b177b",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Using an ONNX model"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "778d4593",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Here as an example, we use `onnxruntime` in python on CPU to execute the ONNX model. However, any platform that supports an ONNX runtime could be used in principle. Launch the runtime session below:"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "9689b1bf",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"ort_session = onnxruntime.InferenceSession(onnx_model_path)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "7708ead6",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"To use the ONNX model, the image must first be pre-processed using the SAM image encoder. This is a heavier weight process best performed on GPU. SamPredictor can be used as normal, then `.get_image_embedding()` will retreive the intermediate features."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "26e067b4",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"sam.to(device='cuda')\n",
|
|
||||||
"predictor = SamPredictor(sam)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "7ad3f0d6",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"predictor.set_image(image)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "8a6f0f07",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"image_embedding = predictor.get_image_embedding().cpu().numpy()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "5e112f33",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"image_embedding.shape"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "6337b654",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"The ONNX model has a different input signature than `SamPredictor.predict`. The following inputs must all be supplied. Note the special cases for both point and mask inputs. All inputs are `np.float32`.\n",
|
|
||||||
"* `image_embeddings`: The image embedding from `predictor.get_image_embedding()`. Has a batch index of length 1.\n",
|
|
||||||
"* `point_coords`: Coordinates of sparse input prompts, corresponding to both point inputs and box inputs. Boxes are encoded using two points, one for the top-left corner and one for the bottom-right corner. *Coordinates must already be transformed to long-side 1024.* Has a batch index of length 1.\n",
|
|
||||||
"* `point_labels`: Labels for the sparse input prompts. 0 is a negative input point, 1 is a positive input point, 2 is a top-left box corner, 3 is a bottom-right box corner, and -1 is a padding point. *If there is no box input, a single padding point with label -1 and coordinates (0.0, 0.0) should be concatenated.*\n",
|
|
||||||
"* `mask_input`: A mask input to the model with shape 1x1x256x256. This must be supplied even if there is no mask input. In this case, it can just be zeros.\n",
|
|
||||||
"* `has_mask_input`: An indicator for the mask input. 1 indicates a mask input, 0 indicates no mask input.\n",
|
|
||||||
"* `orig_im_size`: The size of the input image in (H,W) format, before any transformation. \n",
|
|
||||||
"\n",
|
|
||||||
"Additionally, the ONNX model does not threshold the output mask logits. To obtain a binary mask, threshold at `sam.mask_threshold` (equal to 0.0)."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "bf5a9f55",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### Example point input"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "1c0deef0",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"input_point = np.array([[500, 375]])\n",
|
|
||||||
"input_label = np.array([1])"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "7256394c",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Add a batch index, concatenate a padding point, and transform."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "4f69903e",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[None, :, :]\n",
|
|
||||||
"onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[None, :].astype(np.float32)\n",
|
|
||||||
"\n",
|
|
||||||
"onnx_coord = predictor.transform.apply_coords(onnx_coord, image.shape[:2]).astype(np.float32)\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "b188dc53",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Create an empty mask input and an indicator for no mask."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "5cb52bcf",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)\n",
|
|
||||||
"onnx_has_mask_input = np.zeros(1, dtype=np.float32)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "a99c2cc5",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Package the inputs to run in the onnx model"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "b1d7ea11",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"ort_inputs = {\n",
|
|
||||||
" \"image_embeddings\": image_embedding,\n",
|
|
||||||
" \"point_coords\": onnx_coord,\n",
|
|
||||||
" \"point_labels\": onnx_label,\n",
|
|
||||||
" \"mask_input\": onnx_mask_input,\n",
|
|
||||||
" \"has_mask_input\": onnx_has_mask_input,\n",
|
|
||||||
" \"orig_im_size\": np.array(image.shape[:2], dtype=np.float32)\n",
|
|
||||||
"}"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "4b6409c9",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Predict a mask and threshold it."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "dc4cc082",
|
|
||||||
"metadata": {
|
|
||||||
"scrolled": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"masks, _, low_res_logits = ort_session.run(None, ort_inputs)\n",
|
|
||||||
"masks = masks > predictor.model.mask_threshold"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "d778a8fb",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"masks.shape"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "badb1175",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"plt.figure(figsize=(10,10))\n",
|
|
||||||
"plt.imshow(image)\n",
|
|
||||||
"show_mask(masks, plt.gca())\n",
|
|
||||||
"show_points(input_point, input_label, plt.gca())\n",
|
|
||||||
"plt.axis('off')\n",
|
|
||||||
"plt.show() "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "1f1d4d15",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### Example mask input"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "b319da82",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"input_point = np.array([[500, 375], [1125, 625]])\n",
|
|
||||||
"input_label = np.array([1, 1])\n",
|
|
||||||
"\n",
|
|
||||||
"# Use the mask output from the previous run. It is already in the correct form for input to the ONNX model.\n",
|
|
||||||
"onnx_mask_input = low_res_logits"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "b1823b37",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Transform the points as in the previous example."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "8885130f",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[None, :, :]\n",
|
|
||||||
"onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[None, :].astype(np.float32)\n",
|
|
||||||
"\n",
|
|
||||||
"onnx_coord = predictor.transform.apply_coords(onnx_coord, image.shape[:2]).astype(np.float32)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "28e47b69",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"The `has_mask_input` indicator is now 1."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "3ab4483a",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"onnx_has_mask_input = np.ones(1, dtype=np.float32)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "d3781955",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Package inputs, then predict and threshold the mask."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "0c1ec096",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"ort_inputs = {\n",
|
|
||||||
" \"image_embeddings\": image_embedding,\n",
|
|
||||||
" \"point_coords\": onnx_coord,\n",
|
|
||||||
" \"point_labels\": onnx_label,\n",
|
|
||||||
" \"mask_input\": onnx_mask_input,\n",
|
|
||||||
" \"has_mask_input\": onnx_has_mask_input,\n",
|
|
||||||
" \"orig_im_size\": np.array(image.shape[:2], dtype=np.float32)\n",
|
|
||||||
"}\n",
|
|
||||||
"\n",
|
|
||||||
"masks, _, _ = ort_session.run(None, ort_inputs)\n",
|
|
||||||
"masks = masks > predictor.model.mask_threshold"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "1e36554b",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"plt.figure(figsize=(10,10))\n",
|
|
||||||
"plt.imshow(image)\n",
|
|
||||||
"show_mask(masks, plt.gca())\n",
|
|
||||||
"show_points(input_point, input_label, plt.gca())\n",
|
|
||||||
"plt.axis('off')\n",
|
|
||||||
"plt.show() "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "2ef211d0",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### Example box and point input"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "51e58d2e",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"input_box = np.array([425, 600, 700, 875])\n",
|
|
||||||
"input_point = np.array([[575, 750]])\n",
|
|
||||||
"input_label = np.array([0])"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "6e119dcb",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Add a batch index, concatenate a box and point inputs, add the appropriate labels for the box corners, and transform. There is no padding point since the input includes a box input."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "bfbe4911",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"onnx_box_coords = input_box.reshape(2, 2)\n",
|
|
||||||
"onnx_box_labels = np.array([2,3])\n",
|
|
||||||
"\n",
|
|
||||||
"onnx_coord = np.concatenate([input_point, onnx_box_coords], axis=0)[None, :, :]\n",
|
|
||||||
"onnx_label = np.concatenate([input_label, onnx_box_labels], axis=0)[None, :].astype(np.float32)\n",
|
|
||||||
"\n",
|
|
||||||
"onnx_coord = predictor.transform.apply_coords(onnx_coord, image.shape[:2]).astype(np.float32)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "65edabd2",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"Package inputs, then predict and threshold the mask."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "2abfba56",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)\n",
|
|
||||||
"onnx_has_mask_input = np.zeros(1, dtype=np.float32)\n",
|
|
||||||
"\n",
|
|
||||||
"ort_inputs = {\n",
|
|
||||||
" \"image_embeddings\": image_embedding,\n",
|
|
||||||
" \"point_coords\": onnx_coord,\n",
|
|
||||||
" \"point_labels\": onnx_label,\n",
|
|
||||||
" \"mask_input\": onnx_mask_input,\n",
|
|
||||||
" \"has_mask_input\": onnx_has_mask_input,\n",
|
|
||||||
" \"orig_im_size\": np.array(image.shape[:2], dtype=np.float32)\n",
|
|
||||||
"}\n",
|
|
||||||
"\n",
|
|
||||||
"masks, _, _ = ort_session.run(None, ort_inputs)\n",
|
|
||||||
"masks = masks > predictor.model.mask_threshold"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "8301bf33",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"plt.figure(figsize=(10, 10))\n",
|
|
||||||
"plt.imshow(image)\n",
|
|
||||||
"show_mask(masks[0], plt.gca())\n",
|
|
||||||
"show_box(input_box, plt.gca())\n",
|
|
||||||
"show_points(input_point, input_label, plt.gca())\n",
|
|
||||||
"plt.axis('off')\n",
|
|
||||||
"plt.show()"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3 (ipykernel)",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.8.0"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 5
|
|
||||||
}
|
|
@ -1,242 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import cv2 # type: ignore
|
|
||||||
|
|
||||||
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
from typing import Any, Dict, List
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description=(
|
|
||||||
"Runs automatic mask generation on an input image or directory of images, "
|
|
||||||
"and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, "
|
|
||||||
"as well as pycocotools if saving in RLE format."
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--input",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="Path to either a single input image or folder of images.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--output",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help=(
|
|
||||||
"Path to the directory where masks will be output. Output will be either a folder "
|
|
||||||
"of PNGs per image or a single json with COCO-style masks."
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--model-type",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="The type of model to load, in ['default', 'vit_h', 'vit_l', 'vit_b']",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--checkpoint",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="The path to the SAM checkpoint to use for mask generation.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--device", type=str, default="cuda", help="The device to run generation on."
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--convert-to-rle",
|
|
||||||
action="store_true",
|
|
||||||
help=(
|
|
||||||
"Save masks as COCO RLEs in a single json instead of as a folder of PNGs. "
|
|
||||||
"Requires pycocotools."
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
amg_settings = parser.add_argument_group("AMG Settings")
|
|
||||||
|
|
||||||
amg_settings.add_argument(
|
|
||||||
"--points-per-side",
|
|
||||||
type=int,
|
|
||||||
default=None,
|
|
||||||
help="Generate masks by sampling a grid over the image with this many points to a side.",
|
|
||||||
)
|
|
||||||
|
|
||||||
amg_settings.add_argument(
|
|
||||||
"--points-per-batch",
|
|
||||||
type=int,
|
|
||||||
default=None,
|
|
||||||
help="How many input points to process simultaneously in one batch.",
|
|
||||||
)
|
|
||||||
|
|
||||||
amg_settings.add_argument(
|
|
||||||
"--pred-iou-thresh",
|
|
||||||
type=float,
|
|
||||||
default=None,
|
|
||||||
help="Exclude masks with a predicted score from the model that is lower than this threshold.",
|
|
||||||
)
|
|
||||||
|
|
||||||
amg_settings.add_argument(
|
|
||||||
"--stability-score-thresh",
|
|
||||||
type=float,
|
|
||||||
default=None,
|
|
||||||
help="Exclude masks with a stability score lower than this threshold.",
|
|
||||||
)
|
|
||||||
|
|
||||||
amg_settings.add_argument(
|
|
||||||
"--stability-score-offset",
|
|
||||||
type=float,
|
|
||||||
default=None,
|
|
||||||
help="Larger values perturb the mask more when measuring stability score.",
|
|
||||||
)
|
|
||||||
|
|
||||||
amg_settings.add_argument(
|
|
||||||
"--box-nms-thresh",
|
|
||||||
type=float,
|
|
||||||
default=None,
|
|
||||||
help="The overlap threshold for excluding a duplicate mask.",
|
|
||||||
)
|
|
||||||
|
|
||||||
amg_settings.add_argument(
|
|
||||||
"--crop-n-layers",
|
|
||||||
type=int,
|
|
||||||
default=None,
|
|
||||||
help=(
|
|
||||||
"If >0, mask generation is run on smaller crops of the image to generate more masks. "
|
|
||||||
"The value sets how many different scales to crop at."
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
amg_settings.add_argument(
|
|
||||||
"--crop-nms-thresh",
|
|
||||||
type=float,
|
|
||||||
default=None,
|
|
||||||
help="The overlap threshold for excluding duplicate masks across different crops.",
|
|
||||||
)
|
|
||||||
|
|
||||||
amg_settings.add_argument(
|
|
||||||
"--crop-overlap-ratio",
|
|
||||||
type=int,
|
|
||||||
default=None,
|
|
||||||
help="Larger numbers mean image crops will overlap more.",
|
|
||||||
)
|
|
||||||
|
|
||||||
amg_settings.add_argument(
|
|
||||||
"--crop-n-points-downscale-factor",
|
|
||||||
type=int,
|
|
||||||
default=None,
|
|
||||||
help="The number of points-per-side in each layer of crop is reduced by this factor.",
|
|
||||||
)
|
|
||||||
|
|
||||||
amg_settings.add_argument(
|
|
||||||
"--min-mask-region-area",
|
|
||||||
type=int,
|
|
||||||
default=None,
|
|
||||||
help=(
|
|
||||||
"Disconnected mask regions or holes with area smaller than this value "
|
|
||||||
"in pixels are removed by postprocessing."
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def write_masks_to_folder(masks: List[Dict[str, Any]], path: str) -> None:
|
|
||||||
header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h" # noqa
|
|
||||||
metadata = [header]
|
|
||||||
for i, mask_data in enumerate(masks):
|
|
||||||
mask = mask_data["segmentation"]
|
|
||||||
filename = f"{i}.png"
|
|
||||||
cv2.imwrite(os.path.join(path, filename), mask * 255)
|
|
||||||
mask_metadata = [
|
|
||||||
str(i),
|
|
||||||
str(mask_data["area"]),
|
|
||||||
*[str(x) for x in mask_data["bbox"]],
|
|
||||||
*[str(x) for x in mask_data["point_coords"][0]],
|
|
||||||
str(mask_data["predicted_iou"]),
|
|
||||||
str(mask_data["stability_score"]),
|
|
||||||
*[str(x) for x in mask_data["crop_box"]],
|
|
||||||
]
|
|
||||||
row = ",".join(mask_metadata)
|
|
||||||
metadata.append(row)
|
|
||||||
metadata_path = os.path.join(path, "metadata.csv")
|
|
||||||
with open(metadata_path, "w") as f:
|
|
||||||
f.write("\n".join(metadata))
|
|
||||||
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
def get_amg_kwargs(args):
|
|
||||||
amg_kwargs = {
|
|
||||||
"points_per_side": args.points_per_side,
|
|
||||||
"points_per_batch": args.points_per_batch,
|
|
||||||
"pred_iou_thresh": args.pred_iou_thresh,
|
|
||||||
"stability_score_thresh": args.stability_score_thresh,
|
|
||||||
"stability_score_offset": args.stability_score_offset,
|
|
||||||
"box_nms_thresh": args.box_nms_thresh,
|
|
||||||
"crop_n_layers": args.crop_n_layers,
|
|
||||||
"crop_nms_thresh": args.crop_nms_thresh,
|
|
||||||
"crop_overlap_ratio": args.crop_overlap_ratio,
|
|
||||||
"crop_n_points_downscale_factor": args.crop_n_points_downscale_factor,
|
|
||||||
"min_mask_region_area": args.min_mask_region_area,
|
|
||||||
}
|
|
||||||
amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None}
|
|
||||||
return amg_kwargs
|
|
||||||
|
|
||||||
|
|
||||||
def main(args: argparse.Namespace) -> None:
|
|
||||||
print("Loading model...")
|
|
||||||
sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
|
|
||||||
_ = sam.to(device=args.device)
|
|
||||||
output_mode = "coco_rle" if args.convert_to_rle else "binary_mask"
|
|
||||||
amg_kwargs = get_amg_kwargs(args)
|
|
||||||
generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode, **amg_kwargs)
|
|
||||||
|
|
||||||
if not os.path.isdir(args.input):
|
|
||||||
targets = [args.input]
|
|
||||||
else:
|
|
||||||
targets = [
|
|
||||||
f
|
|
||||||
for f in os.listdir(args.input)
|
|
||||||
if not os.path.isdir(os.path.join(args.input, f))
|
|
||||||
]
|
|
||||||
targets = [os.path.join(args.input, f) for f in targets]
|
|
||||||
|
|
||||||
os.makedirs(args.output, exist_ok=True)
|
|
||||||
|
|
||||||
for t in targets:
|
|
||||||
print(f"Processing '{t}'...")
|
|
||||||
image = cv2.imread(t)
|
|
||||||
if image is None:
|
|
||||||
print(f"Could not load '{t}' as an image, skipping...")
|
|
||||||
continue
|
|
||||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
||||||
|
|
||||||
masks = generator.generate(image)
|
|
||||||
|
|
||||||
base = os.path.basename(t)
|
|
||||||
base = os.path.splitext(base)[0]
|
|
||||||
save_base = os.path.join(args.output, base)
|
|
||||||
if output_mode == "binary_mask":
|
|
||||||
os.makedirs(save_base, exist_ok=False)
|
|
||||||
write_masks_to_folder(masks, save_base)
|
|
||||||
else:
|
|
||||||
save_file = save_base + ".json"
|
|
||||||
with open(save_file, "w") as f:
|
|
||||||
json.dump(masks, f)
|
|
||||||
print("Done!")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
args = parser.parse_args()
|
|
||||||
main(args)
|
|
@ -1,206 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from segment_anything import sam_model_registry
|
|
||||||
from segment_anything.utils.onnx import SamOnnxModel
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import warnings
|
|
||||||
|
|
||||||
try:
|
|
||||||
import onnxruntime # type: ignore
|
|
||||||
|
|
||||||
onnxruntime_exists = True
|
|
||||||
except ImportError:
|
|
||||||
onnxruntime_exists = False
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description="Export the SAM prompt encoder and mask decoder to an ONNX model."
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--checkpoint",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="The path to the SAM model checkpoint.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--output", type=str, required=True, help="The filename to save the ONNX model to."
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--model-type",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="In ['default', 'vit_h', 'vit_l', 'vit_b']. Which type of SAM model to export.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--return-single-mask",
|
|
||||||
action="store_true",
|
|
||||||
help=(
|
|
||||||
"If true, the exported ONNX model will only return the best mask, "
|
|
||||||
"instead of returning multiple masks. For high resolution images "
|
|
||||||
"this can improve runtime when upscaling masks is expensive."
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--opset",
|
|
||||||
type=int,
|
|
||||||
default=17,
|
|
||||||
help="The ONNX opset version to use. Must be >=11",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--quantize-out",
|
|
||||||
type=str,
|
|
||||||
default=None,
|
|
||||||
help=(
|
|
||||||
"If set, will quantize the model and save it with this name. "
|
|
||||||
"Quantization is performed with quantize_dynamic from onnxruntime.quantization.quantize."
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--gelu-approximate",
|
|
||||||
action="store_true",
|
|
||||||
help=(
|
|
||||||
"Replace GELU operations with approximations using tanh. Useful "
|
|
||||||
"for some runtimes that have slow or unimplemented erf ops, used in GELU."
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--use-stability-score",
|
|
||||||
action="store_true",
|
|
||||||
help=(
|
|
||||||
"Replaces the model's predicted mask quality score with the stability "
|
|
||||||
"score calculated on the low resolution masks using an offset of 1.0. "
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--return-extra-metrics",
|
|
||||||
action="store_true",
|
|
||||||
help=(
|
|
||||||
"The model will return five results: (masks, scores, stability_scores, "
|
|
||||||
"areas, low_res_logits) instead of the usual three. This can be "
|
|
||||||
"significantly slower for high resolution outputs."
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def run_export(
|
|
||||||
model_type: str,
|
|
||||||
checkpoint: str,
|
|
||||||
output: str,
|
|
||||||
opset: int,
|
|
||||||
return_single_mask: bool,
|
|
||||||
gelu_approximate: bool = False,
|
|
||||||
use_stability_score: bool = False,
|
|
||||||
return_extra_metrics=False,
|
|
||||||
):
|
|
||||||
print("Loading model...")
|
|
||||||
sam = sam_model_registry[model_type](checkpoint=checkpoint)
|
|
||||||
|
|
||||||
onnx_model = SamOnnxModel(
|
|
||||||
model=sam,
|
|
||||||
return_single_mask=return_single_mask,
|
|
||||||
use_stability_score=use_stability_score,
|
|
||||||
return_extra_metrics=return_extra_metrics,
|
|
||||||
)
|
|
||||||
|
|
||||||
if gelu_approximate:
|
|
||||||
for n, m in onnx_model.named_modules():
|
|
||||||
if isinstance(m, torch.nn.GELU):
|
|
||||||
m.approximate = "tanh"
|
|
||||||
|
|
||||||
dynamic_axes = {
|
|
||||||
"point_coords": {1: "num_points"},
|
|
||||||
"point_labels": {1: "num_points"},
|
|
||||||
}
|
|
||||||
|
|
||||||
embed_dim = sam.prompt_encoder.embed_dim
|
|
||||||
embed_size = sam.prompt_encoder.image_embedding_size
|
|
||||||
mask_input_size = [4 * x for x in embed_size]
|
|
||||||
dummy_inputs = {
|
|
||||||
"image_embeddings": torch.randn(1, embed_dim, *embed_size, dtype=torch.float),
|
|
||||||
"point_coords": torch.randint(
|
|
||||||
low=0, high=1024, size=(1, 5, 2), dtype=torch.float
|
|
||||||
),
|
|
||||||
"point_labels": torch.randint(low=0, high=4, size=(1, 5), dtype=torch.float),
|
|
||||||
"mask_input": torch.randn(1, 1, *mask_input_size, dtype=torch.float),
|
|
||||||
"has_mask_input": torch.tensor([1], dtype=torch.float),
|
|
||||||
"orig_im_size": torch.tensor([1500, 2250], dtype=torch.float),
|
|
||||||
}
|
|
||||||
|
|
||||||
_ = onnx_model(**dummy_inputs)
|
|
||||||
|
|
||||||
output_names = ["masks", "iou_predictions", "low_res_masks"]
|
|
||||||
|
|
||||||
with warnings.catch_warnings():
|
|
||||||
warnings.filterwarnings("ignore", category=torch.jit.TracerWarning)
|
|
||||||
warnings.filterwarnings("ignore", category=UserWarning)
|
|
||||||
with open(output, "wb") as f:
|
|
||||||
print(f"Exporting onnx model to {output}...")
|
|
||||||
torch.onnx.export(
|
|
||||||
onnx_model,
|
|
||||||
tuple(dummy_inputs.values()),
|
|
||||||
f,
|
|
||||||
export_params=True,
|
|
||||||
verbose=False,
|
|
||||||
opset_version=opset,
|
|
||||||
do_constant_folding=True,
|
|
||||||
input_names=list(dummy_inputs.keys()),
|
|
||||||
output_names=output_names,
|
|
||||||
dynamic_axes=dynamic_axes,
|
|
||||||
)
|
|
||||||
|
|
||||||
if onnxruntime_exists:
|
|
||||||
ort_inputs = {k: to_numpy(v) for k, v in dummy_inputs.items()}
|
|
||||||
# set cpu provider default
|
|
||||||
providers = ["CPUExecutionProvider"]
|
|
||||||
ort_session = onnxruntime.InferenceSession(output, providers=providers)
|
|
||||||
_ = ort_session.run(None, ort_inputs)
|
|
||||||
print("Model has successfully been run with ONNXRuntime.")
|
|
||||||
|
|
||||||
|
|
||||||
def to_numpy(tensor):
|
|
||||||
return tensor.cpu().numpy()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
args = parser.parse_args()
|
|
||||||
run_export(
|
|
||||||
model_type=args.model_type,
|
|
||||||
checkpoint=args.checkpoint,
|
|
||||||
output=args.output,
|
|
||||||
opset=args.opset,
|
|
||||||
return_single_mask=args.return_single_mask,
|
|
||||||
gelu_approximate=args.gelu_approximate,
|
|
||||||
use_stability_score=args.use_stability_score,
|
|
||||||
return_extra_metrics=args.return_extra_metrics,
|
|
||||||
)
|
|
||||||
|
|
||||||
if args.quantize_out is not None:
|
|
||||||
assert onnxruntime_exists, "onnxruntime is required to quantize the model."
|
|
||||||
from onnxruntime.quantization import QuantType # type: ignore
|
|
||||||
from onnxruntime.quantization.quantize import quantize_dynamic # type: ignore
|
|
||||||
|
|
||||||
print(f"Quantizing model and writing to {args.quantize_out}...")
|
|
||||||
quantize_dynamic(
|
|
||||||
model_input=args.output,
|
|
||||||
model_output=args.quantize_out,
|
|
||||||
optimize_model=True,
|
|
||||||
per_channel=False,
|
|
||||||
reduce_range=False,
|
|
||||||
weight_type=QuantType.QUInt8,
|
|
||||||
)
|
|
||||||
print("Done!")
|
|
@ -1,5 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
@ -1,382 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
|
|
||||||
|
|
||||||
from typing import Any, Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
from .modeling import Sam
|
|
||||||
from .predictor import SamPredictor
|
|
||||||
from .utils.amg import (
|
|
||||||
MaskData,
|
|
||||||
area_from_rle,
|
|
||||||
batch_iterator,
|
|
||||||
batched_mask_to_box,
|
|
||||||
box_xyxy_to_xywh,
|
|
||||||
build_all_layer_point_grids,
|
|
||||||
calculate_stability_score,
|
|
||||||
coco_encode_rle,
|
|
||||||
generate_crop_boxes,
|
|
||||||
is_box_near_crop_edge,
|
|
||||||
mask_to_rle_pytorch,
|
|
||||||
remove_small_regions,
|
|
||||||
rle_to_mask,
|
|
||||||
uncrop_boxes_xyxy,
|
|
||||||
uncrop_masks,
|
|
||||||
uncrop_points,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class SamAutomaticMaskGenerator:
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
model: Sam,
|
|
||||||
points_per_side: Optional[int] = 32,
|
|
||||||
points_per_batch: int = 64,
|
|
||||||
pred_iou_thresh: float = 0.88,
|
|
||||||
stability_score_thresh: float = 0.95,
|
|
||||||
stability_score_offset: float = 1.0,
|
|
||||||
box_nms_thresh: float = 0.7,
|
|
||||||
crop_n_layers: int = 0,
|
|
||||||
crop_nms_thresh: float = 0.7,
|
|
||||||
crop_overlap_ratio: float = 512 / 1500,
|
|
||||||
crop_n_points_downscale_factor: int = 1,
|
|
||||||
point_grids: Optional[List[np.ndarray]] = None,
|
|
||||||
min_mask_region_area: int = 0,
|
|
||||||
output_mode: str = "binary_mask",
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Using a SAM model, generates masks for the entire image.
|
|
||||||
Generates a grid of point prompts over the image, then filters
|
|
||||||
low quality and duplicate masks. The default settings are chosen
|
|
||||||
for SAM with a ViT-H backbone.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
model (Sam): The SAM model to use for mask prediction.
|
|
||||||
points_per_side (int or None): The number of points to be sampled
|
|
||||||
along one side of the image. The total number of points is
|
|
||||||
points_per_side**2. If None, 'point_grids' must provide explicit
|
|
||||||
point sampling.
|
|
||||||
points_per_batch (int): Sets the number of points run simultaneously
|
|
||||||
by the model. Higher numbers may be faster but use more GPU memory.
|
|
||||||
pred_iou_thresh (float): A filtering threshold in [0,1], using the
|
|
||||||
model's predicted mask quality.
|
|
||||||
stability_score_thresh (float): A filtering threshold in [0,1], using
|
|
||||||
the stability of the mask under changes to the cutoff used to binarize
|
|
||||||
the model's mask predictions.
|
|
||||||
stability_score_offset (float): The amount to shift the cutoff when
|
|
||||||
calculated the stability score.
|
|
||||||
box_nms_thresh (float): The box IoU cutoff used by non-maximal
|
|
||||||
suppression to filter duplicate masks.
|
|
||||||
crop_n_layers (int): If >0, mask prediction will be run again on
|
|
||||||
crops of the image. Sets the number of layers to run, where each
|
|
||||||
layer has 2**i_layer number of image crops.
|
|
||||||
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
|
|
||||||
suppression to filter duplicate masks between different crops.
|
|
||||||
crop_overlap_ratio (float): Sets the degree to which crops overlap.
|
|
||||||
In the first crop layer, crops will overlap by this fraction of
|
|
||||||
the image length. Later layers with more crops scale down this overlap.
|
|
||||||
crop_n_points_downscale_factor (int): The number of points-per-side
|
|
||||||
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
|
||||||
point_grids (list(np.ndarray) or None): A list over explicit grids
|
|
||||||
of points used for sampling, normalized to [0,1]. The nth grid in the
|
|
||||||
list is used in the nth crop layer. Exclusive with points_per_side.
|
|
||||||
min_mask_region_area (int): If >0, postprocessing will be applied
|
|
||||||
to remove disconnected regions and holes in masks with area smaller
|
|
||||||
than min_mask_region_area. Requires opencv.
|
|
||||||
output_mode (str): The form masks are returned in. Can be 'binary_mask',
|
|
||||||
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
|
|
||||||
For large resolutions, 'binary_mask' may consume large amounts of
|
|
||||||
memory.
|
|
||||||
"""
|
|
||||||
|
|
||||||
assert (points_per_side is None) != (
|
|
||||||
point_grids is None
|
|
||||||
), "Exactly one of points_per_side or point_grid must be provided."
|
|
||||||
if points_per_side is not None:
|
|
||||||
self.point_grids = build_all_layer_point_grids(
|
|
||||||
points_per_side,
|
|
||||||
crop_n_layers,
|
|
||||||
crop_n_points_downscale_factor,
|
|
||||||
)
|
|
||||||
elif point_grids is not None:
|
|
||||||
self.point_grids = point_grids
|
|
||||||
else:
|
|
||||||
raise ValueError("Can't have both points_per_side and point_grid be None.")
|
|
||||||
|
|
||||||
assert output_mode in [
|
|
||||||
"binary_mask",
|
|
||||||
"uncompressed_rle",
|
|
||||||
"coco_rle",
|
|
||||||
], f"Unknown output_mode {output_mode}."
|
|
||||||
if output_mode == "coco_rle":
|
|
||||||
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
|
|
||||||
|
|
||||||
if min_mask_region_area > 0:
|
|
||||||
import cv2 # type: ignore # noqa: F401
|
|
||||||
|
|
||||||
self.predictor = SamPredictor(model)
|
|
||||||
self.points_per_batch = points_per_batch
|
|
||||||
self.pred_iou_thresh = pred_iou_thresh
|
|
||||||
self.stability_score_thresh = stability_score_thresh
|
|
||||||
self.stability_score_offset = stability_score_offset
|
|
||||||
self.box_nms_thresh = box_nms_thresh
|
|
||||||
self.crop_n_layers = crop_n_layers
|
|
||||||
self.crop_nms_thresh = crop_nms_thresh
|
|
||||||
self.crop_overlap_ratio = crop_overlap_ratio
|
|
||||||
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
|
|
||||||
self.min_mask_region_area = min_mask_region_area
|
|
||||||
self.output_mode = output_mode
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
|
|
||||||
"""
|
|
||||||
Generates masks for the given image.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
list(dict(str, any)): A list over records for masks. Each record is
|
|
||||||
a dict containing the following keys:
|
|
||||||
segmentation (dict(str, any) or np.ndarray): The mask. If
|
|
||||||
output_mode='binary_mask', is an array of shape HW. Otherwise,
|
|
||||||
is a dictionary containing the RLE.
|
|
||||||
bbox (list(float)): The box around the mask, in XYWH format.
|
|
||||||
area (int): The area in pixels of the mask.
|
|
||||||
predicted_iou (float): The model's own prediction of the mask's
|
|
||||||
quality. This is filtered by the pred_iou_thresh parameter.
|
|
||||||
point_coords (list(list(float))): The point coordinates input
|
|
||||||
to the model to generate this mask.
|
|
||||||
stability_score (float): A measure of the mask's quality. This
|
|
||||||
is filtered on using the stability_score_thresh parameter.
|
|
||||||
crop_box (list(float)): The crop of the image used to generate
|
|
||||||
the mask, given in XYWH format.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Generate masks
|
|
||||||
mask_data = self._generate_masks(image)
|
|
||||||
|
|
||||||
# Filter small disconnected regions and holes in masks
|
|
||||||
if self.min_mask_region_area > 0:
|
|
||||||
mask_data = self.postprocess_small_regions(
|
|
||||||
mask_data,
|
|
||||||
self.min_mask_region_area,
|
|
||||||
max(self.box_nms_thresh, self.crop_nms_thresh),
|
|
||||||
)
|
|
||||||
|
|
||||||
# Encode masks
|
|
||||||
if self.output_mode == "coco_rle":
|
|
||||||
mask_data["segmentations"] = [
|
|
||||||
coco_encode_rle(rle) for rle in mask_data["rles"]
|
|
||||||
]
|
|
||||||
elif self.output_mode == "binary_mask":
|
|
||||||
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
|
|
||||||
else:
|
|
||||||
mask_data["segmentations"] = mask_data["rles"]
|
|
||||||
|
|
||||||
# Write mask records
|
|
||||||
curr_anns = []
|
|
||||||
for idx in range(len(mask_data["segmentations"])):
|
|
||||||
ann = {
|
|
||||||
"segmentation": mask_data["segmentations"][idx],
|
|
||||||
"area": area_from_rle(mask_data["rles"][idx]),
|
|
||||||
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
|
|
||||||
"predicted_iou": mask_data["iou_preds"][idx].item(),
|
|
||||||
"point_coords": [mask_data["points"][idx].tolist()],
|
|
||||||
"stability_score": mask_data["stability_score"][idx].item(),
|
|
||||||
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
|
|
||||||
}
|
|
||||||
curr_anns.append(ann)
|
|
||||||
|
|
||||||
return curr_anns
|
|
||||||
|
|
||||||
def _generate_masks(self, image: np.ndarray) -> MaskData:
|
|
||||||
orig_size = image.shape[:2]
|
|
||||||
crop_boxes, layer_idxs = generate_crop_boxes(
|
|
||||||
orig_size, self.crop_n_layers, self.crop_overlap_ratio
|
|
||||||
)
|
|
||||||
|
|
||||||
# Iterate over image crops
|
|
||||||
data = MaskData()
|
|
||||||
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
|
|
||||||
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
|
|
||||||
data.cat(crop_data)
|
|
||||||
|
|
||||||
# Remove duplicate masks between crops
|
|
||||||
if len(crop_boxes) > 1:
|
|
||||||
# Prefer masks from smaller crops
|
|
||||||
scores = 1 / box_area(data["crop_boxes"])
|
|
||||||
scores = scores.to(data["boxes"].device)
|
|
||||||
keep_by_nms = batched_nms(
|
|
||||||
data["boxes"].float(),
|
|
||||||
scores,
|
|
||||||
torch.zeros_like(data["boxes"][:, 0]), # categories
|
|
||||||
iou_threshold=self.crop_nms_thresh,
|
|
||||||
)
|
|
||||||
data.filter(keep_by_nms)
|
|
||||||
|
|
||||||
data.to_numpy()
|
|
||||||
return data
|
|
||||||
|
|
||||||
def _process_crop(
|
|
||||||
self,
|
|
||||||
image: np.ndarray,
|
|
||||||
crop_box: List[int],
|
|
||||||
crop_layer_idx: int,
|
|
||||||
orig_size: Tuple[int, ...],
|
|
||||||
) -> MaskData:
|
|
||||||
# Crop the image and calculate embeddings
|
|
||||||
x0, y0, x1, y1 = crop_box
|
|
||||||
cropped_im = image[y0:y1, x0:x1, :]
|
|
||||||
cropped_im_size = cropped_im.shape[:2]
|
|
||||||
self.predictor.set_image(cropped_im)
|
|
||||||
|
|
||||||
# Get points for this crop
|
|
||||||
points_scale = np.array(cropped_im_size)[None, ::-1]
|
|
||||||
points_for_image = self.point_grids[crop_layer_idx] * points_scale
|
|
||||||
|
|
||||||
# Generate masks for this crop in batches
|
|
||||||
data = MaskData()
|
|
||||||
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
|
|
||||||
batch_data = self._process_batch(
|
|
||||||
points, cropped_im_size, crop_box, orig_size
|
|
||||||
)
|
|
||||||
data.cat(batch_data)
|
|
||||||
del batch_data
|
|
||||||
self.predictor.reset_image()
|
|
||||||
|
|
||||||
# Remove duplicates within this crop.
|
|
||||||
keep_by_nms = batched_nms(
|
|
||||||
data["boxes"].float(),
|
|
||||||
data["iou_preds"],
|
|
||||||
torch.zeros_like(data["boxes"][:, 0]), # categories
|
|
||||||
iou_threshold=self.box_nms_thresh,
|
|
||||||
)
|
|
||||||
data.filter(keep_by_nms)
|
|
||||||
|
|
||||||
# Return to the original image frame
|
|
||||||
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
|
|
||||||
data["points"] = uncrop_points(data["points"], crop_box)
|
|
||||||
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
|
|
||||||
|
|
||||||
return data
|
|
||||||
|
|
||||||
def _process_batch(
|
|
||||||
self,
|
|
||||||
points: np.ndarray,
|
|
||||||
im_size: Tuple[int, ...],
|
|
||||||
crop_box: List[int],
|
|
||||||
orig_size: Tuple[int, ...],
|
|
||||||
) -> MaskData:
|
|
||||||
orig_h, orig_w = orig_size
|
|
||||||
|
|
||||||
# Run model on this batch
|
|
||||||
transformed_points = self.predictor.transform.apply_coords(points, im_size)
|
|
||||||
in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
|
|
||||||
in_labels = torch.ones(
|
|
||||||
in_points.shape[0], dtype=torch.int, device=in_points.device
|
|
||||||
)
|
|
||||||
masks, iou_preds, _ = self.predictor.predict_torch(
|
|
||||||
in_points[:, None, :],
|
|
||||||
in_labels[:, None],
|
|
||||||
multimask_output=True,
|
|
||||||
return_logits=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Serialize predictions and store in MaskData
|
|
||||||
data = MaskData(
|
|
||||||
masks=masks.flatten(0, 1),
|
|
||||||
iou_preds=iou_preds.flatten(0, 1),
|
|
||||||
points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
|
|
||||||
)
|
|
||||||
del masks
|
|
||||||
|
|
||||||
# Filter by predicted IoU
|
|
||||||
if self.pred_iou_thresh > 0.0:
|
|
||||||
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
|
||||||
data.filter(keep_mask)
|
|
||||||
|
|
||||||
# Calculate stability score
|
|
||||||
data["stability_score"] = calculate_stability_score(
|
|
||||||
data["masks"],
|
|
||||||
self.predictor.model.mask_threshold,
|
|
||||||
self.stability_score_offset,
|
|
||||||
)
|
|
||||||
if self.stability_score_thresh > 0.0:
|
|
||||||
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
|
||||||
data.filter(keep_mask)
|
|
||||||
|
|
||||||
# Threshold masks and calculate boxes
|
|
||||||
data["masks"] = data["masks"] > self.predictor.model.mask_threshold
|
|
||||||
data["boxes"] = batched_mask_to_box(data["masks"])
|
|
||||||
|
|
||||||
# Filter boxes that touch crop boundaries
|
|
||||||
keep_mask = ~is_box_near_crop_edge(
|
|
||||||
data["boxes"], crop_box, [0, 0, orig_w, orig_h]
|
|
||||||
)
|
|
||||||
if not torch.all(keep_mask):
|
|
||||||
data.filter(keep_mask)
|
|
||||||
|
|
||||||
# Compress to RLE
|
|
||||||
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
|
|
||||||
data["rles"] = mask_to_rle_pytorch(data["masks"])
|
|
||||||
del data["masks"]
|
|
||||||
|
|
||||||
return data
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def postprocess_small_regions(
|
|
||||||
mask_data: MaskData, min_area: int, nms_thresh: float
|
|
||||||
) -> MaskData:
|
|
||||||
"""
|
|
||||||
Removes small disconnected regions and holes in masks, then reruns
|
|
||||||
box NMS to remove any new duplicates.
|
|
||||||
|
|
||||||
Edits mask_data in place.
|
|
||||||
|
|
||||||
Requires open-cv as a dependency.
|
|
||||||
"""
|
|
||||||
if len(mask_data["rles"]) == 0:
|
|
||||||
return mask_data
|
|
||||||
|
|
||||||
# Filter small disconnected regions and holes
|
|
||||||
new_masks = []
|
|
||||||
scores = []
|
|
||||||
for rle in mask_data["rles"]:
|
|
||||||
mask = rle_to_mask(rle)
|
|
||||||
|
|
||||||
mask, changed = remove_small_regions(mask, min_area, mode="holes")
|
|
||||||
unchanged = not changed
|
|
||||||
mask, changed = remove_small_regions(mask, min_area, mode="islands")
|
|
||||||
unchanged = unchanged and not changed
|
|
||||||
|
|
||||||
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
|
||||||
# Give score=0 to changed masks and score=1 to unchanged masks
|
|
||||||
# so NMS will prefer ones that didn't need postprocessing
|
|
||||||
scores.append(float(unchanged))
|
|
||||||
|
|
||||||
# Recalculate boxes and remove any new duplicates
|
|
||||||
masks = torch.cat(new_masks, dim=0)
|
|
||||||
boxes = batched_mask_to_box(masks)
|
|
||||||
keep_by_nms = batched_nms(
|
|
||||||
boxes.float(),
|
|
||||||
torch.as_tensor(scores),
|
|
||||||
torch.zeros_like(boxes[:, 0]), # categories
|
|
||||||
iou_threshold=nms_thresh,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Only recalculate RLEs for masks that have changed
|
|
||||||
for i_mask in keep_by_nms:
|
|
||||||
if scores[i_mask] == 0.0:
|
|
||||||
mask_torch = masks[i_mask].unsqueeze(0)
|
|
||||||
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
|
|
||||||
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
|
|
||||||
mask_data.filter(keep_by_nms)
|
|
||||||
|
|
||||||
return mask_data
|
|
@ -1,113 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from functools import partial
|
|
||||||
|
|
||||||
from .modeling import (
|
|
||||||
ImageEncoderViT,
|
|
||||||
MaskDecoder,
|
|
||||||
PromptEncoder,
|
|
||||||
Sam,
|
|
||||||
TwoWayTransformer,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def build_sam_vit_h(checkpoint=None):
|
|
||||||
return _build_sam(
|
|
||||||
encoder_embed_dim=1280,
|
|
||||||
encoder_depth=32,
|
|
||||||
encoder_num_heads=16,
|
|
||||||
encoder_global_attn_indexes=[7, 15, 23, 31],
|
|
||||||
checkpoint=checkpoint,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
build_sam = build_sam_vit_h
|
|
||||||
|
|
||||||
|
|
||||||
def build_sam_vit_l(checkpoint=None):
|
|
||||||
return _build_sam(
|
|
||||||
encoder_embed_dim=1024,
|
|
||||||
encoder_depth=24,
|
|
||||||
encoder_num_heads=16,
|
|
||||||
encoder_global_attn_indexes=[5, 11, 17, 23],
|
|
||||||
checkpoint=checkpoint,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def build_sam_vit_b(checkpoint=None):
|
|
||||||
return _build_sam(
|
|
||||||
encoder_embed_dim=768,
|
|
||||||
encoder_depth=12,
|
|
||||||
encoder_num_heads=12,
|
|
||||||
encoder_global_attn_indexes=[2, 5, 8, 11],
|
|
||||||
checkpoint=checkpoint,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
sam_model_registry = {
|
|
||||||
"default": build_sam_vit_h,
|
|
||||||
"vit_h": build_sam_vit_h,
|
|
||||||
"vit_l": build_sam_vit_l,
|
|
||||||
"vit_b": build_sam_vit_b,
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def _build_sam(
|
|
||||||
encoder_embed_dim,
|
|
||||||
encoder_depth,
|
|
||||||
encoder_num_heads,
|
|
||||||
encoder_global_attn_indexes,
|
|
||||||
checkpoint=None,
|
|
||||||
):
|
|
||||||
prompt_embed_dim = 256
|
|
||||||
image_size = 1024
|
|
||||||
vit_patch_size = 16
|
|
||||||
image_embedding_size = image_size // vit_patch_size
|
|
||||||
sam = Sam(
|
|
||||||
image_encoder=ImageEncoderViT(
|
|
||||||
depth=encoder_depth,
|
|
||||||
embed_dim=encoder_embed_dim,
|
|
||||||
img_size=image_size,
|
|
||||||
mlp_ratio=4,
|
|
||||||
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
|
||||||
num_heads=encoder_num_heads,
|
|
||||||
patch_size=vit_patch_size,
|
|
||||||
qkv_bias=True,
|
|
||||||
use_rel_pos=True,
|
|
||||||
global_attn_indexes=encoder_global_attn_indexes,
|
|
||||||
window_size=14,
|
|
||||||
out_chans=prompt_embed_dim,
|
|
||||||
),
|
|
||||||
prompt_encoder=PromptEncoder(
|
|
||||||
embed_dim=prompt_embed_dim,
|
|
||||||
image_embedding_size=(image_embedding_size, image_embedding_size),
|
|
||||||
input_image_size=(image_size, image_size),
|
|
||||||
mask_in_chans=16,
|
|
||||||
),
|
|
||||||
mask_decoder=MaskDecoder(
|
|
||||||
num_multimask_outputs=3,
|
|
||||||
transformer=TwoWayTransformer(
|
|
||||||
depth=2,
|
|
||||||
embedding_dim=prompt_embed_dim,
|
|
||||||
mlp_dim=2048,
|
|
||||||
num_heads=8,
|
|
||||||
),
|
|
||||||
transformer_dim=prompt_embed_dim,
|
|
||||||
iou_head_depth=3,
|
|
||||||
iou_head_hidden_dim=256,
|
|
||||||
),
|
|
||||||
pixel_mean=[123.675, 116.28, 103.53],
|
|
||||||
pixel_std=[58.395, 57.12, 57.375],
|
|
||||||
)
|
|
||||||
sam.eval()
|
|
||||||
if checkpoint is not None:
|
|
||||||
with open(checkpoint, "rb") as f:
|
|
||||||
state_dict = torch.load(f)
|
|
||||||
sam.load_state_dict(state_dict)
|
|
||||||
return sam
|
|
@ -1,5 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
@ -1,43 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
|
|
||||||
from typing import Type
|
|
||||||
|
|
||||||
|
|
||||||
class MLPBlock(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
embedding_dim: int,
|
|
||||||
mlp_dim: int,
|
|
||||||
act: Type[nn.Module] = nn.GELU,
|
|
||||||
) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
|
||||||
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
|
||||||
self.act = act()
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
||||||
return self.lin2(self.act(self.lin1(x)))
|
|
||||||
|
|
||||||
|
|
||||||
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
|
||||||
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
|
||||||
class LayerNorm2d(nn.Module):
|
|
||||||
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.weight = nn.Parameter(torch.ones(num_channels))
|
|
||||||
self.bias = nn.Parameter(torch.zeros(num_channels))
|
|
||||||
self.eps = eps
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
||||||
u = x.mean(1, keepdim=True)
|
|
||||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
|
||||||
x = (x - u) / torch.sqrt(s + self.eps)
|
|
||||||
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
|
||||||
return x
|
|
@ -1,419 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
|
|
||||||
from typing import Optional, Tuple, Type
|
|
||||||
|
|
||||||
from .common import LayerNorm2d, MLPBlock
|
|
||||||
|
|
||||||
|
|
||||||
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
|
||||||
class ImageEncoderViT(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
img_size: int = 1024,
|
|
||||||
patch_size: int = 16,
|
|
||||||
in_chans: int = 3,
|
|
||||||
embed_dim: int = 768,
|
|
||||||
depth: int = 12,
|
|
||||||
num_heads: int = 12,
|
|
||||||
mlp_ratio: float = 4.0,
|
|
||||||
out_chans: int = 256,
|
|
||||||
qkv_bias: bool = True,
|
|
||||||
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
|
||||||
act_layer: Type[nn.Module] = nn.GELU,
|
|
||||||
use_abs_pos: bool = True,
|
|
||||||
use_rel_pos: bool = False,
|
|
||||||
rel_pos_zero_init: bool = True,
|
|
||||||
window_size: int = 0,
|
|
||||||
global_attn_indexes: Tuple[int, ...] = (),
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
img_size (int): Input image size.
|
|
||||||
patch_size (int): Patch size.
|
|
||||||
in_chans (int): Number of input image channels.
|
|
||||||
embed_dim (int): Patch embedding dimension.
|
|
||||||
depth (int): Depth of ViT.
|
|
||||||
num_heads (int): Number of attention heads in each ViT block.
|
|
||||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
||||||
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
||||||
norm_layer (nn.Module): Normalization layer.
|
|
||||||
act_layer (nn.Module): Activation layer.
|
|
||||||
use_abs_pos (bool): If True, use absolute positional embeddings.
|
|
||||||
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
|
||||||
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
||||||
window_size (int): Window size for window attention blocks.
|
|
||||||
global_attn_indexes (list): Indexes for blocks using global attention.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
self.img_size = img_size
|
|
||||||
|
|
||||||
self.patch_embed = PatchEmbed(
|
|
||||||
kernel_size=(patch_size, patch_size),
|
|
||||||
stride=(patch_size, patch_size),
|
|
||||||
in_chans=in_chans,
|
|
||||||
embed_dim=embed_dim,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.pos_embed: Optional[nn.Parameter] = None
|
|
||||||
if use_abs_pos:
|
|
||||||
# Initialize absolute positional embedding with pretrain image size.
|
|
||||||
self.pos_embed = nn.Parameter(
|
|
||||||
torch.zeros(
|
|
||||||
1, img_size // patch_size, img_size // patch_size, embed_dim
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
self.blocks = nn.ModuleList()
|
|
||||||
for i in range(depth):
|
|
||||||
block = Block(
|
|
||||||
dim=embed_dim,
|
|
||||||
num_heads=num_heads,
|
|
||||||
mlp_ratio=mlp_ratio,
|
|
||||||
qkv_bias=qkv_bias,
|
|
||||||
norm_layer=norm_layer,
|
|
||||||
act_layer=act_layer,
|
|
||||||
use_rel_pos=use_rel_pos,
|
|
||||||
rel_pos_zero_init=rel_pos_zero_init,
|
|
||||||
window_size=window_size if i not in global_attn_indexes else 0,
|
|
||||||
input_size=(img_size // patch_size, img_size // patch_size),
|
|
||||||
)
|
|
||||||
self.blocks.append(block)
|
|
||||||
|
|
||||||
self.neck = nn.Sequential(
|
|
||||||
nn.Conv2d(
|
|
||||||
embed_dim,
|
|
||||||
out_chans,
|
|
||||||
kernel_size=1,
|
|
||||||
bias=False,
|
|
||||||
),
|
|
||||||
LayerNorm2d(out_chans),
|
|
||||||
nn.Conv2d(
|
|
||||||
out_chans,
|
|
||||||
out_chans,
|
|
||||||
kernel_size=3,
|
|
||||||
padding=1,
|
|
||||||
bias=False,
|
|
||||||
),
|
|
||||||
LayerNorm2d(out_chans),
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
||||||
x = self.patch_embed(x)
|
|
||||||
if self.pos_embed is not None:
|
|
||||||
x = x + self.pos_embed
|
|
||||||
|
|
||||||
for blk in self.blocks:
|
|
||||||
x = blk(x)
|
|
||||||
|
|
||||||
x = self.neck(x.permute(0, 3, 1, 2))
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class Block(nn.Module):
|
|
||||||
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
dim: int,
|
|
||||||
num_heads: int,
|
|
||||||
mlp_ratio: float = 4.0,
|
|
||||||
qkv_bias: bool = True,
|
|
||||||
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
|
||||||
act_layer: Type[nn.Module] = nn.GELU,
|
|
||||||
use_rel_pos: bool = False,
|
|
||||||
rel_pos_zero_init: bool = True,
|
|
||||||
window_size: int = 0,
|
|
||||||
input_size: Optional[Tuple[int, int]] = None,
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
dim (int): Number of input channels.
|
|
||||||
num_heads (int): Number of attention heads in each ViT block.
|
|
||||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
||||||
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
||||||
norm_layer (nn.Module): Normalization layer.
|
|
||||||
act_layer (nn.Module): Activation layer.
|
|
||||||
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
|
||||||
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
||||||
window_size (int): Window size for window attention blocks. If it equals 0, then
|
|
||||||
use global attention.
|
|
||||||
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
|
||||||
positional parameter size.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
self.norm1 = norm_layer(dim)
|
|
||||||
self.attn = Attention(
|
|
||||||
dim,
|
|
||||||
num_heads=num_heads,
|
|
||||||
qkv_bias=qkv_bias,
|
|
||||||
use_rel_pos=use_rel_pos,
|
|
||||||
rel_pos_zero_init=rel_pos_zero_init,
|
|
||||||
input_size=input_size if window_size == 0 else (window_size, window_size),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.norm2 = norm_layer(dim)
|
|
||||||
self.mlp = MLPBlock(
|
|
||||||
embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer
|
|
||||||
)
|
|
||||||
|
|
||||||
self.window_size = window_size
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
||||||
shortcut = x
|
|
||||||
x = self.norm1(x)
|
|
||||||
# Window partition
|
|
||||||
if self.window_size > 0:
|
|
||||||
H, W = x.shape[1], x.shape[2]
|
|
||||||
x, pad_hw = window_partition(x, self.window_size)
|
|
||||||
|
|
||||||
x = self.attn(x)
|
|
||||||
# Reverse window partition
|
|
||||||
if self.window_size > 0:
|
|
||||||
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
|
||||||
|
|
||||||
x = shortcut + x
|
|
||||||
x = x + self.mlp(self.norm2(x))
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class Attention(nn.Module):
|
|
||||||
"""Multi-head Attention block with relative position embeddings."""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
dim: int,
|
|
||||||
num_heads: int = 8,
|
|
||||||
qkv_bias: bool = True,
|
|
||||||
use_rel_pos: bool = False,
|
|
||||||
rel_pos_zero_init: bool = True,
|
|
||||||
input_size: Optional[Tuple[int, int]] = None,
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
dim (int): Number of input channels.
|
|
||||||
num_heads (int): Number of attention heads.
|
|
||||||
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
||||||
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
|
||||||
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
||||||
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
|
||||||
positional parameter size.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
self.num_heads = num_heads
|
|
||||||
head_dim = dim // num_heads
|
|
||||||
self.scale = head_dim**-0.5
|
|
||||||
|
|
||||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
||||||
self.proj = nn.Linear(dim, dim)
|
|
||||||
|
|
||||||
self.use_rel_pos = use_rel_pos
|
|
||||||
if self.use_rel_pos:
|
|
||||||
assert (
|
|
||||||
input_size is not None
|
|
||||||
), "Input size must be provided if using relative positional encoding."
|
|
||||||
# initialize relative positional embeddings
|
|
||||||
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
|
||||||
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
||||||
B, H, W, _ = x.shape
|
|
||||||
# qkv with shape (3, B, nHead, H * W, C)
|
|
||||||
qkv = (
|
|
||||||
self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
|
||||||
)
|
|
||||||
# q, k, v with shape (B * nHead, H * W, C)
|
|
||||||
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
|
||||||
|
|
||||||
attn = (q * self.scale) @ k.transpose(-2, -1)
|
|
||||||
|
|
||||||
if self.use_rel_pos:
|
|
||||||
attn = add_decomposed_rel_pos(
|
|
||||||
attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)
|
|
||||||
)
|
|
||||||
|
|
||||||
attn = attn.softmax(dim=-1)
|
|
||||||
x = (
|
|
||||||
(attn @ v)
|
|
||||||
.view(B, self.num_heads, H, W, -1)
|
|
||||||
.permute(0, 2, 3, 1, 4)
|
|
||||||
.reshape(B, H, W, -1)
|
|
||||||
)
|
|
||||||
x = self.proj(x)
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def window_partition(
|
|
||||||
x: torch.Tensor, window_size: int
|
|
||||||
) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
|
||||||
"""
|
|
||||||
Partition into non-overlapping windows with padding if needed.
|
|
||||||
Args:
|
|
||||||
x (tensor): input tokens with [B, H, W, C].
|
|
||||||
window_size (int): window size.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
|
||||||
(Hp, Wp): padded height and width before partition
|
|
||||||
"""
|
|
||||||
B, H, W, C = x.shape
|
|
||||||
|
|
||||||
pad_h = (window_size - H % window_size) % window_size
|
|
||||||
pad_w = (window_size - W % window_size) % window_size
|
|
||||||
if pad_h > 0 or pad_w > 0:
|
|
||||||
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
|
||||||
Hp, Wp = H + pad_h, W + pad_w
|
|
||||||
|
|
||||||
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
|
||||||
windows = (
|
|
||||||
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
|
||||||
)
|
|
||||||
return windows, (Hp, Wp)
|
|
||||||
|
|
||||||
|
|
||||||
def window_unpartition(
|
|
||||||
windows: torch.Tensor,
|
|
||||||
window_size: int,
|
|
||||||
pad_hw: Tuple[int, int],
|
|
||||||
hw: Tuple[int, int],
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Window unpartition into original sequences and removing padding.
|
|
||||||
Args:
|
|
||||||
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
|
||||||
window_size (int): window size.
|
|
||||||
pad_hw (Tuple): padded height and width (Hp, Wp).
|
|
||||||
hw (Tuple): original height and width (H, W) before padding.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
x: unpartitioned sequences with [B, H, W, C].
|
|
||||||
"""
|
|
||||||
Hp, Wp = pad_hw
|
|
||||||
H, W = hw
|
|
||||||
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
|
||||||
x = windows.view(
|
|
||||||
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
|
|
||||||
)
|
|
||||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
|
||||||
|
|
||||||
if Hp > H or Wp > W:
|
|
||||||
x = x[:, :H, :W, :].contiguous()
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Get relative positional embeddings according to the relative positions of
|
|
||||||
query and key sizes.
|
|
||||||
Args:
|
|
||||||
q_size (int): size of query q.
|
|
||||||
k_size (int): size of key k.
|
|
||||||
rel_pos (Tensor): relative position embeddings (L, C).
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Extracted positional embeddings according to relative positions.
|
|
||||||
"""
|
|
||||||
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
|
||||||
# Interpolate rel pos if needed.
|
|
||||||
if rel_pos.shape[0] != max_rel_dist:
|
|
||||||
# Interpolate rel pos.
|
|
||||||
rel_pos_resized = F.interpolate(
|
|
||||||
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
|
||||||
size=max_rel_dist,
|
|
||||||
mode="linear",
|
|
||||||
)
|
|
||||||
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
|
||||||
else:
|
|
||||||
rel_pos_resized = rel_pos
|
|
||||||
|
|
||||||
# Scale the coords with short length if shapes for q and k are different.
|
|
||||||
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
|
||||||
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
|
||||||
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
|
||||||
|
|
||||||
return rel_pos_resized[relative_coords.long()]
|
|
||||||
|
|
||||||
|
|
||||||
def add_decomposed_rel_pos(
|
|
||||||
attn: torch.Tensor,
|
|
||||||
q: torch.Tensor,
|
|
||||||
rel_pos_h: torch.Tensor,
|
|
||||||
rel_pos_w: torch.Tensor,
|
|
||||||
q_size: Tuple[int, int],
|
|
||||||
k_size: Tuple[int, int],
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
|
||||||
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
|
||||||
Args:
|
|
||||||
attn (Tensor): attention map.
|
|
||||||
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
|
||||||
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
|
||||||
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
|
||||||
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
|
||||||
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
attn (Tensor): attention map with added relative positional embeddings.
|
|
||||||
"""
|
|
||||||
q_h, q_w = q_size
|
|
||||||
k_h, k_w = k_size
|
|
||||||
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
|
||||||
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
|
||||||
|
|
||||||
B, _, dim = q.shape
|
|
||||||
r_q = q.reshape(B, q_h, q_w, dim)
|
|
||||||
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
|
||||||
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
|
||||||
|
|
||||||
attn = (
|
|
||||||
attn.view(B, q_h, q_w, k_h, k_w)
|
|
||||||
+ rel_h[:, :, :, :, None]
|
|
||||||
+ rel_w[:, :, :, None, :]
|
|
||||||
).view(B, q_h * q_w, k_h * k_w)
|
|
||||||
|
|
||||||
return attn
|
|
||||||
|
|
||||||
|
|
||||||
class PatchEmbed(nn.Module):
|
|
||||||
"""
|
|
||||||
Image to Patch Embedding.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
kernel_size: Tuple[int, int] = (16, 16),
|
|
||||||
stride: Tuple[int, int] = (16, 16),
|
|
||||||
padding: Tuple[int, int] = (0, 0),
|
|
||||||
in_chans: int = 3,
|
|
||||||
embed_dim: int = 768,
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
kernel_size (Tuple): kernel size of the projection layer.
|
|
||||||
stride (Tuple): stride of the projection layer.
|
|
||||||
padding (Tuple): padding size of the projection layer.
|
|
||||||
in_chans (int): Number of input image channels.
|
|
||||||
embed_dim (int): Patch embedding dimension.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.proj = nn.Conv2d(
|
|
||||||
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
||||||
x = self.proj(x)
|
|
||||||
# B C H W -> B H W C
|
|
||||||
x = x.permute(0, 2, 3, 1)
|
|
||||||
return x
|
|
@ -1,186 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import nn
|
|
||||||
from torch.nn import functional as F
|
|
||||||
|
|
||||||
from typing import List, Tuple, Type
|
|
||||||
|
|
||||||
from .common import LayerNorm2d
|
|
||||||
|
|
||||||
|
|
||||||
class MaskDecoder(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
*,
|
|
||||||
transformer_dim: int,
|
|
||||||
transformer: nn.Module,
|
|
||||||
num_multimask_outputs: int = 3,
|
|
||||||
activation: Type[nn.Module] = nn.GELU,
|
|
||||||
iou_head_depth: int = 3,
|
|
||||||
iou_head_hidden_dim: int = 256,
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Predicts masks given an image and prompt embeddings, using a
|
|
||||||
transformer architecture.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
transformer_dim (int): the channel dimension of the transformer
|
|
||||||
transformer (nn.Module): the transformer used to predict masks
|
|
||||||
num_multimask_outputs (int): the number of masks to predict
|
|
||||||
when disambiguating masks
|
|
||||||
activation (nn.Module): the type of activation to use when
|
|
||||||
upscaling masks
|
|
||||||
iou_head_depth (int): the depth of the MLP used to predict
|
|
||||||
mask quality
|
|
||||||
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
|
||||||
used to predict mask quality
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
self.transformer_dim = transformer_dim
|
|
||||||
self.transformer = transformer
|
|
||||||
|
|
||||||
self.num_multimask_outputs = num_multimask_outputs
|
|
||||||
|
|
||||||
self.iou_token = nn.Embedding(1, transformer_dim)
|
|
||||||
self.num_mask_tokens = num_multimask_outputs + 1
|
|
||||||
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
|
||||||
|
|
||||||
self.output_upscaling = nn.Sequential(
|
|
||||||
nn.ConvTranspose2d(
|
|
||||||
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
|
|
||||||
),
|
|
||||||
LayerNorm2d(transformer_dim // 4),
|
|
||||||
activation(),
|
|
||||||
nn.ConvTranspose2d(
|
|
||||||
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
|
|
||||||
),
|
|
||||||
activation(),
|
|
||||||
)
|
|
||||||
self.output_hypernetworks_mlps = nn.ModuleList(
|
|
||||||
[
|
|
||||||
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
|
||||||
for i in range(self.num_mask_tokens)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
self.iou_prediction_head = MLP(
|
|
||||||
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
image_embeddings: torch.Tensor,
|
|
||||||
image_pe: torch.Tensor,
|
|
||||||
sparse_prompt_embeddings: torch.Tensor,
|
|
||||||
dense_prompt_embeddings: torch.Tensor,
|
|
||||||
multimask_output: bool,
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Predict masks given image and prompt embeddings.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
|
||||||
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
|
||||||
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
|
||||||
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
|
||||||
multimask_output (bool): Whether to return multiple masks or a single
|
|
||||||
mask.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
torch.Tensor: batched predicted masks
|
|
||||||
torch.Tensor: batched predictions of mask quality
|
|
||||||
"""
|
|
||||||
masks, iou_pred = self.predict_masks(
|
|
||||||
image_embeddings=image_embeddings,
|
|
||||||
image_pe=image_pe,
|
|
||||||
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
|
||||||
dense_prompt_embeddings=dense_prompt_embeddings,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Select the correct mask or masks for output
|
|
||||||
if multimask_output:
|
|
||||||
mask_slice = slice(1, None)
|
|
||||||
else:
|
|
||||||
mask_slice = slice(0, 1)
|
|
||||||
masks = masks[:, mask_slice, :, :]
|
|
||||||
iou_pred = iou_pred[:, mask_slice]
|
|
||||||
|
|
||||||
# Prepare output
|
|
||||||
return masks, iou_pred
|
|
||||||
|
|
||||||
def predict_masks(
|
|
||||||
self,
|
|
||||||
image_embeddings: torch.Tensor,
|
|
||||||
image_pe: torch.Tensor,
|
|
||||||
sparse_prompt_embeddings: torch.Tensor,
|
|
||||||
dense_prompt_embeddings: torch.Tensor,
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""Predicts masks. See 'forward' for more details."""
|
|
||||||
# Concatenate output tokens
|
|
||||||
output_tokens = torch.cat(
|
|
||||||
[self.iou_token.weight, self.mask_tokens.weight], dim=0
|
|
||||||
)
|
|
||||||
output_tokens = output_tokens.unsqueeze(0).expand(
|
|
||||||
sparse_prompt_embeddings.size(0), -1, -1
|
|
||||||
)
|
|
||||||
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
|
||||||
|
|
||||||
# Expand per-image data in batch direction to be per-mask
|
|
||||||
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
|
||||||
src = src + dense_prompt_embeddings
|
|
||||||
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
|
||||||
b, c, h, w = src.shape
|
|
||||||
|
|
||||||
# Run the transformer
|
|
||||||
hs, src = self.transformer(src, pos_src, tokens)
|
|
||||||
iou_token_out = hs[:, 0, :]
|
|
||||||
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
|
|
||||||
|
|
||||||
# Upscale mask embeddings and predict masks using the mask tokens
|
|
||||||
src = src.transpose(1, 2).view(b, c, h, w)
|
|
||||||
upscaled_embedding = self.output_upscaling(src)
|
|
||||||
hyper_in_list: List[torch.Tensor] = []
|
|
||||||
for i in range(self.num_mask_tokens):
|
|
||||||
hyper_in_list.append(
|
|
||||||
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
|
|
||||||
)
|
|
||||||
hyper_in = torch.stack(hyper_in_list, dim=1)
|
|
||||||
b, c, h, w = upscaled_embedding.shape
|
|
||||||
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
|
||||||
|
|
||||||
# Generate mask quality predictions
|
|
||||||
iou_pred = self.iou_prediction_head(iou_token_out)
|
|
||||||
|
|
||||||
return masks, iou_pred
|
|
||||||
|
|
||||||
|
|
||||||
# Lightly adapted from
|
|
||||||
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
|
||||||
class MLP(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
input_dim: int,
|
|
||||||
hidden_dim: int,
|
|
||||||
output_dim: int,
|
|
||||||
num_layers: int,
|
|
||||||
sigmoid_output: bool = False,
|
|
||||||
) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.num_layers = num_layers
|
|
||||||
h = [hidden_dim] * (num_layers - 1)
|
|
||||||
self.layers = nn.ModuleList(
|
|
||||||
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
|
||||||
)
|
|
||||||
self.sigmoid_output = sigmoid_output
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
for i, layer in enumerate(self.layers):
|
|
||||||
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
||||||
if self.sigmoid_output:
|
|
||||||
x = F.sigmoid(x)
|
|
||||||
return x
|
|
@ -1,225 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from torch import nn
|
|
||||||
|
|
||||||
from typing import Any, Optional, Tuple, Type
|
|
||||||
|
|
||||||
from .common import LayerNorm2d
|
|
||||||
|
|
||||||
|
|
||||||
class PromptEncoder(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
embed_dim: int,
|
|
||||||
image_embedding_size: Tuple[int, int],
|
|
||||||
input_image_size: Tuple[int, int],
|
|
||||||
mask_in_chans: int,
|
|
||||||
activation: Type[nn.Module] = nn.GELU,
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Encodes prompts for input to SAM's mask decoder.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
embed_dim (int): The prompts' embedding dimension
|
|
||||||
image_embedding_size (tuple(int, int)): The spatial size of the
|
|
||||||
image embedding, as (H, W).
|
|
||||||
input_image_size (int): The padded size of the image as input
|
|
||||||
to the image encoder, as (H, W).
|
|
||||||
mask_in_chans (int): The number of hidden channels used for
|
|
||||||
encoding input masks.
|
|
||||||
activation (nn.Module): The activation to use when encoding
|
|
||||||
input masks.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
self.embed_dim = embed_dim
|
|
||||||
self.input_image_size = input_image_size
|
|
||||||
self.image_embedding_size = image_embedding_size
|
|
||||||
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
|
||||||
|
|
||||||
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
|
||||||
point_embeddings = [
|
|
||||||
nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)
|
|
||||||
]
|
|
||||||
self.point_embeddings = nn.ModuleList(point_embeddings)
|
|
||||||
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
|
||||||
|
|
||||||
self.mask_input_size = (
|
|
||||||
4 * image_embedding_size[0],
|
|
||||||
4 * image_embedding_size[1],
|
|
||||||
)
|
|
||||||
self.mask_downscaling = nn.Sequential(
|
|
||||||
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
|
||||||
LayerNorm2d(mask_in_chans // 4),
|
|
||||||
activation(),
|
|
||||||
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
|
||||||
LayerNorm2d(mask_in_chans),
|
|
||||||
activation(),
|
|
||||||
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
|
||||||
)
|
|
||||||
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
|
||||||
|
|
||||||
def get_dense_pe(self) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Returns the positional encoding used to encode point prompts,
|
|
||||||
applied to a dense set of points the shape of the image encoding.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
torch.Tensor: Positional encoding with shape
|
|
||||||
1x(embed_dim)x(embedding_h)x(embedding_w)
|
|
||||||
"""
|
|
||||||
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
|
||||||
|
|
||||||
def _embed_points(
|
|
||||||
self,
|
|
||||||
points: torch.Tensor,
|
|
||||||
labels: torch.Tensor,
|
|
||||||
pad: bool,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""Embeds point prompts."""
|
|
||||||
points = points + 0.5 # Shift to center of pixel
|
|
||||||
if pad:
|
|
||||||
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
|
||||||
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
|
||||||
points = torch.cat([points, padding_point], dim=1)
|
|
||||||
labels = torch.cat([labels, padding_label], dim=1)
|
|
||||||
point_embedding = self.pe_layer.forward_with_coords(
|
|
||||||
points, self.input_image_size
|
|
||||||
)
|
|
||||||
point_embedding[labels == -1] = 0.0
|
|
||||||
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
|
||||||
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
|
||||||
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
|
||||||
return point_embedding
|
|
||||||
|
|
||||||
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
|
||||||
"""Embeds box prompts."""
|
|
||||||
boxes = boxes + 0.5 # Shift to center of pixel
|
|
||||||
coords = boxes.reshape(-1, 2, 2)
|
|
||||||
corner_embedding = self.pe_layer.forward_with_coords(
|
|
||||||
coords, self.input_image_size
|
|
||||||
)
|
|
||||||
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
|
||||||
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
|
||||||
return corner_embedding
|
|
||||||
|
|
||||||
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
|
||||||
"""Embeds mask inputs."""
|
|
||||||
mask_embedding = self.mask_downscaling(masks)
|
|
||||||
return mask_embedding
|
|
||||||
|
|
||||||
def _get_batch_size(
|
|
||||||
self,
|
|
||||||
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
|
||||||
boxes: Optional[torch.Tensor],
|
|
||||||
masks: Optional[torch.Tensor],
|
|
||||||
) -> int:
|
|
||||||
"""
|
|
||||||
Gets the batch size of the output given the batch size of the input prompts.
|
|
||||||
"""
|
|
||||||
if points is not None:
|
|
||||||
return points[0].shape[0]
|
|
||||||
elif boxes is not None:
|
|
||||||
return boxes.shape[0]
|
|
||||||
elif masks is not None:
|
|
||||||
return masks.shape[0]
|
|
||||||
else:
|
|
||||||
return 1
|
|
||||||
|
|
||||||
def _get_device(self) -> torch.device:
|
|
||||||
return self.point_embeddings[0].weight.device
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
|
||||||
boxes: Optional[torch.Tensor],
|
|
||||||
masks: Optional[torch.Tensor],
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Embeds different types of prompts, returning both sparse and dense
|
|
||||||
embeddings.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
|
||||||
and labels to embed.
|
|
||||||
boxes (torch.Tensor or none): boxes to embed
|
|
||||||
masks (torch.Tensor or none): masks to embed
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
|
||||||
BxNx(embed_dim), where N is determined by the number of input points
|
|
||||||
and boxes.
|
|
||||||
torch.Tensor: dense embeddings for the masks, in the shape
|
|
||||||
Bx(embed_dim)x(embed_H)x(embed_W)
|
|
||||||
"""
|
|
||||||
bs = self._get_batch_size(points, boxes, masks)
|
|
||||||
sparse_embeddings = torch.empty(
|
|
||||||
(bs, 0, self.embed_dim), device=self._get_device()
|
|
||||||
)
|
|
||||||
if points is not None:
|
|
||||||
coords, labels = points
|
|
||||||
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
|
||||||
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
|
||||||
if boxes is not None:
|
|
||||||
box_embeddings = self._embed_boxes(boxes)
|
|
||||||
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
|
||||||
|
|
||||||
if masks is not None:
|
|
||||||
dense_embeddings = self._embed_masks(masks)
|
|
||||||
else:
|
|
||||||
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
|
||||||
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
|
||||||
)
|
|
||||||
|
|
||||||
return sparse_embeddings, dense_embeddings
|
|
||||||
|
|
||||||
|
|
||||||
class PositionEmbeddingRandom(nn.Module):
|
|
||||||
"""
|
|
||||||
Positional encoding using random spatial frequencies.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
|
||||||
super().__init__()
|
|
||||||
if scale is None or scale <= 0.0:
|
|
||||||
scale = 1.0
|
|
||||||
self.register_buffer(
|
|
||||||
"positional_encoding_gaussian_matrix",
|
|
||||||
scale * torch.randn((2, num_pos_feats)),
|
|
||||||
)
|
|
||||||
|
|
||||||
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
|
||||||
"""Positionally encode points that are normalized to [0,1]."""
|
|
||||||
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
|
||||||
coords = 2 * coords - 1
|
|
||||||
coords = coords @ self.positional_encoding_gaussian_matrix
|
|
||||||
coords = 2 * np.pi * coords
|
|
||||||
# outputs d_1 x ... x d_n x C shape
|
|
||||||
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
|
||||||
|
|
||||||
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
|
||||||
"""Generate positional encoding for a grid of the specified size."""
|
|
||||||
h, w = size
|
|
||||||
device: Any = self.positional_encoding_gaussian_matrix.device
|
|
||||||
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
|
||||||
y_embed = grid.cumsum(dim=0) - 0.5
|
|
||||||
x_embed = grid.cumsum(dim=1) - 0.5
|
|
||||||
y_embed = y_embed / h
|
|
||||||
x_embed = x_embed / w
|
|
||||||
|
|
||||||
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
|
||||||
return pe.permute(2, 0, 1) # C x H x W
|
|
||||||
|
|
||||||
def forward_with_coords(
|
|
||||||
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""Positionally encode points that are not normalized to [0,1]."""
|
|
||||||
coords = coords_input.clone()
|
|
||||||
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
|
||||||
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
|
||||||
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
|