parent
fbf65094a6
commit
f8778f93df
@ -0,0 +1,93 @@
|
|||||||
|
# TaskQueueSwarm Documentation
|
||||||
|
|
||||||
|
The `TaskQueueSwarm` class is designed to manage and execute tasks using multiple agents concurrently. This class allows for the orchestration of multiple agents processing tasks from a shared queue, facilitating complex workflows where tasks can be distributed and processed in parallel by different agents.
|
||||||
|
|
||||||
|
## Attributes
|
||||||
|
|
||||||
|
| Attribute | Type | Description |
|
||||||
|
|-----------|------|-------------|
|
||||||
|
| `agents` | `List[Agent]` | The list of agents in the swarm. |
|
||||||
|
| `task_queue` | `queue.Queue` | A queue to store tasks for processing. |
|
||||||
|
| `lock` | `threading.Lock` | A lock for thread synchronization. |
|
||||||
|
| `autosave_on` | `bool` | Whether to automatically save the swarm metadata. |
|
||||||
|
| `save_file_path` | `str` | The file path for saving swarm metadata. |
|
||||||
|
| `workspace_dir` | `str` | The directory path of the workspace. |
|
||||||
|
| `return_metadata_on` | `bool` | Whether to return the swarm metadata after running. |
|
||||||
|
| `max_loops` | `int` | The maximum number of loops to run the swarm. |
|
||||||
|
| `metadata` | `SwarmRunMetadata` | Metadata about the swarm run. |
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### `__init__(self, agents: List[Agent], name: str = "Task-Queue-Swarm", description: str = "A swarm that processes tasks from a queue using multiple agents on different threads.", autosave_on: bool = True, save_file_path: str = "swarm_run_metadata.json", workspace_dir: str = os.getenv("WORKSPACE_DIR"), return_metadata_on: bool = False, max_loops: int = 1, *args, **kwargs)`
|
||||||
|
|
||||||
|
The constructor initializes the `TaskQueueSwarm` object.
|
||||||
|
|
||||||
|
- **Parameters:**
|
||||||
|
- `agents` (`List[Agent]`): The list of agents in the swarm.
|
||||||
|
- `name` (`str`, optional): The name of the swarm. Defaults to "Task-Queue-Swarm".
|
||||||
|
- `description` (`str`, optional): The description of the swarm. Defaults to "A swarm that processes tasks from a queue using multiple agents on different threads.".
|
||||||
|
- `autosave_on` (`bool`, optional): Whether to automatically save the swarm metadata. Defaults to True.
|
||||||
|
- `save_file_path` (`str`, optional): The file path to save the swarm metadata. Defaults to "swarm_run_metadata.json".
|
||||||
|
- `workspace_dir` (`str`, optional): The directory path of the workspace. Defaults to os.getenv("WORKSPACE_DIR").
|
||||||
|
- `return_metadata_on` (`bool`, optional): Whether to return the swarm metadata after running. Defaults to False.
|
||||||
|
- `max_loops` (`int`, optional): The maximum number of loops to run the swarm. Defaults to 1.
|
||||||
|
- `*args`: Variable length argument list.
|
||||||
|
- `**kwargs`: Arbitrary keyword arguments.
|
||||||
|
|
||||||
|
### `add_task(self, task: str)`
|
||||||
|
|
||||||
|
Adds a task to the queue.
|
||||||
|
|
||||||
|
- **Parameters:**
|
||||||
|
- `task` (`str`): The task to be added to the queue.
|
||||||
|
|
||||||
|
### `run(self)`
|
||||||
|
|
||||||
|
Runs the swarm by having agents pick up tasks from the queue.
|
||||||
|
|
||||||
|
- **Returns:**
|
||||||
|
- `str`: JSON string of the swarm run metadata if `return_metadata_on` is True.
|
||||||
|
|
||||||
|
- **Usage Example:**
|
||||||
|
```python
|
||||||
|
from swarms import Agent, TaskQueueSwarm
|
||||||
|
from swarms.models import OpenAIChat
|
||||||
|
|
||||||
|
# Initialize the language model
|
||||||
|
llm = OpenAIChat()
|
||||||
|
|
||||||
|
# Initialize agents
|
||||||
|
agent1 = Agent(agent_name="Agent1", llm=llm)
|
||||||
|
agent2 = Agent(agent_name="Agent2", llm=llm)
|
||||||
|
|
||||||
|
# Create the TaskQueueSwarm
|
||||||
|
swarm = TaskQueueSwarm(agents=[agent1, agent2], max_loops=5)
|
||||||
|
|
||||||
|
# Add tasks to the swarm
|
||||||
|
swarm.add_task("Analyze the latest market trends")
|
||||||
|
swarm.add_task("Generate a summary report")
|
||||||
|
|
||||||
|
# Run the swarm
|
||||||
|
result = swarm.run()
|
||||||
|
print(result) # Prints the swarm run metadata
|
||||||
|
```
|
||||||
|
|
||||||
|
This example initializes a `TaskQueueSwarm` with two agents, adds tasks to the queue, and runs the swarm.
|
||||||
|
|
||||||
|
### `save_json_to_file(self)`
|
||||||
|
|
||||||
|
Saves the swarm run metadata to a JSON file.
|
||||||
|
|
||||||
|
### `export_metadata(self)`
|
||||||
|
|
||||||
|
Exports the swarm run metadata as a JSON string.
|
||||||
|
|
||||||
|
- **Returns:**
|
||||||
|
- `str`: JSON string of the swarm run metadata.
|
||||||
|
|
||||||
|
## Additional Notes
|
||||||
|
|
||||||
|
- The `TaskQueueSwarm` uses threading to process tasks concurrently, which can significantly improve performance for I/O-bound tasks.
|
||||||
|
- The `reliability_checks` method ensures that the swarm is properly configured before running.
|
||||||
|
- The swarm automatically handles task distribution among agents and provides detailed metadata about the run.
|
||||||
|
- Error handling and logging are implemented to track the execution flow and capture any issues during task processing.
|
Loading…
Reference in new issue