You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1.7 KiB
1.7 KiB
MCP Integration Demo Script
1. Setup & Architecture Overview
# Terminal 1: Start Stock Server
python examples/mcp_example/mock_stock_server.py
# Terminal 2: Start Math Server
python examples/mcp_example/mock_math_server.py
# Terminal 3: Start Multi-Agent System
python examples/mcp_example/mock_multi_agent.py
2. Key Components
Server-Side:
- FastMCP servers running on ports 8000 and 8001
- Math Server provides: add, multiply, divide operations
- Stock Server provides: price lookup, moving average calculations
Client-Side:
- Multi-agent system with specialized agents
- MCPServerSseParams for server connections
- Automatic task routing based on agent specialization
3. Demo Flow
- Math Operations:
Enter a math problem: 5 plus 3
Enter a math problem: 10 times 4
- Stock Analysis:
Enter a math problem: get price of AAPL
Enter a math problem: calculate moving average of [10,20,30,40,50] over 3 periods
4. Integration Highlights
- Server Configuration:
- FastMCP initialization
- Tool registration using decorators
- SSE transport setup
- Client Integration:
- MCPServerSseParams configuration
- Agent specialization
- Task routing logic
- Communication Flow:
- Client request → Agent processing → MCP server → Response handling
5. Code Architecture
Server Example (Math Server):
@mcp.tool()
def add(a: int, b: int) -> int:
"""Add two numbers together"""
return a + b
Client Example (Multi-Agent):
calculator = MathAgent("Calculator", "http://0.0.0.0:8000")
stock_analyst = MathAgent("StockAnalyst", "http://0.0.0.0:8001")
6. Key Benefits
- Modular Architecture
- Specialized Agents
- Clean API Integration
- Scalable Design